Cotton Belt Corridor Regional Rail
Cultural Resources Existing Conditions

December 2013

Prepared by URS Corporation

Prepared for Dallas Area Rapid Transit
General Planning Consultant Managed by URS Corporation
ABSTRACT

Under contract to the Dallas Area Rapid Transit (DART), URS Corporation (URS) conducted a Cultural Resources Existing Conditions study for the proposed Cotton Belt Corridor Regional Rail Project (Cotton Belt Project) in Tarrant, Dallas, and Collin Counties, Texas. The study was completed to assist DART in meeting their anticipated regulatory obligations under Section 106 of the National Historic Preservation Act and the Antiquities Code of Texas. The project consists of approximately twenty-six (26) miles of rail corridor from Dallas/Fort Worth International Airport (DFW Airport) to central Plano. An archaeological study area was established by creating a 1-kilometer (km) (3,621-foot [ft]) buffer around the construction footprint of the proposed rail corridor. An area-of-potential-effect (APE) for historic-age architectural resources was established in coordination with the Texas Historical Commission (THC) and defined as 175 ft (53 meters [m]) from the centerline for Cotton Belt Corridor Right-of-Way (ROW). For areas requiring new ROW, the APE will be adjusted to 250 ft (76 m) from the centerline.

Data was compiled to develop an environmental cultural context for the project area. A review of the Texas Archeological Sites Atlas (TASA) database and the Texas Historic Sites Atlas (THSA) database was undertaken to identify known cultural resources, previous investigations, and to develop a cultural and historical context for resources in the project area. The TASA database search yielded the presence of 28 previously recorded archaeological sites and four cemeteries. In addition, 31 archaeological investigations have been conducted within the archaeological study area. No National Register of Historic Places (NRHP)-listed or NRHP-eligible archaeological resources are present within the study area. Fifteen archaeological resources have been determined ineligible for listing in the NRHP. The NRHP-status of 10 archaeological resources is undetermined, while the NRHP status for three archaeological resources is unknown.

The THSA database search yielded 28 known historic-age architectural resources potentially within or near the project APE. Following the database search, a historic resources reconnaissance survey of the APE was completed resulting in the documentation of 68 historic-age resources. Of these, three resources are recommended individually eligible for inclusion in the NRHP (Resources 21, 44, and 45). One resource, Resource 21 (Carrollton Depot), was previously designated a Registered Texas Historic Landmark (RTHL). The historic resources reconnaissance survey will be submitted as a separate comprehensive report for review by DART. Lastly, recommendations are provided, which outline professional staff qualifications, methods for proposed field investigation and standards for documentation if it is determined that an intensive archaeological resources survey is required prior to the construction of the Cotton Belt Rail Line.
TABLE OF CONTENTS

ABSTRACT .. 1
TABLE OF CONTENTS .. 2
LIST OF APPENDICES .. 3
LIST OF TABLES .. 3
1.0 INTRODUCTION .. 4
2.0 PROJECT DESCRIPTION ... 4
Section 1... 4
 Cypress Waters Design Options: .. 5
Section 2... 5
Section 3... 6
 North Dallas Design Options ... 6
 Red Line Interface Design Options .. 7
3.0 PROJECT SETTING ... 7
 Topography, Drainage and Geology .. 7
 Vegetation and Land Use ... 8
Soils ... 8
 Tarrant County: ... 8
 Dallas County: ... 8
 Collin County: ... 8
4.0 PREHISTORIC CULTURE HISTORY .. 16
 Paleoindian ... 16
 Archaic .. 17
 Late Prehistoric .. 18
 Protohistoric .. 19
5.0 HISTORIC CONTEXT .. 20
 County and City Development .. 20
 Tarrant County ... 20
 Grapevine ... 21
 Dallas County ... 22
 Coppell ... 23
 Irving/ Las Colinas .. 23
 Farmers Branch .. 25
 Carrollton .. 26
 Dallas ... 27
 Addison .. 28
 Richardson ... 29
 Bess ... 30
 White Rock .. 30
 Collin County .. 30
 Plano ... 31
 Douglass Community ... 31
 Renner .. 32
 Lebanon .. 32
1.0 INTRODUCTION

On behalf of the Dallas Area Rapid Transit (DART), URS Corporation (URS) completed a Cultural Resources Existing Conditions study for the proposed Cotton Belt Project. The project consists of approximately 26 miles of predominantly existing track running in a northeasterly direction from north of Dallas/Fort Worth International Airport (DFW Airport) to central Plano. It passes through Tarrant, Dallas, and Collin Counties and includes the cities of Grapevine, Coppell, Carrollton, Addison, Dallas, Richardson, and Plano (see Appendix A).

This Existing Conditions Report is intended to act as coordination with the THC, regarding the proposed area-of-potential-effect (APE) for archaeological resources, the methods for archaeological survey, and the results for the recently completed architectural survey and inventory of the proposed Cotton Belt Regional Rail project.

The Cotton Belt Project alignment is designed for double tracking within the existing single track corridor. The alignment will have a 20-ft track center offset and a maximum design speed of 80 miles per hour with the majority of the horizontal alignment following closely to the existing freight track alignment. Lower design speeds were utilized in areas where existing constraints would not accommodate larger radius curves. The alignment will consist of at-grade, retained earth, retained cut sections, tunnel sections, and aerial structures. The majority of the project area runs along existing tracks through commercial and industrial districts, as well as residential developments.

2.0 PROJECT DESCRIPTION

The project lies within the following U.S. Geological Survey (USGS) 7.5 Minute quadrangle maps: Grapevine, Tex. [3297-444], Carrollton, Tex. [3296-333], Addison, Tex. [3296-334], Garland, Tex., and Plano, Tex. [3396-212]. The URS design team divided the entire project corridor into three separate, contiguous sections (Appendix A and B):

Section 1

The proposed Cotton Belt CProject assumes that the proposed Fort Worth Transportation Authority’s (The T) TEX Rail project extending from southwest Fort Worth to Terminal B at DFW Airport will be in place. The DART project would utilize the portion of the T’s project that extends northwest, on new right-of-way, from the DFW Terminal B Station to the DFW North Station located just south of the Cotton Belt Corridor. At this station the TEX Rail project turns to west on the Cotton Belt right-of-way, while the DART project turns to the east. Section 1 of the Cotton Belt Project begins at the DFW North Station. DART’s project proceeds northeast and connects to the existing Cotton Belt freight track. It then heads east and crosses the Cottonwood Branch and its floodplain on an aerial structure and continues under International Parkway, under Interstate Highway (IH) 635 and crosses Royal Lane and Freeport Parkway at-
grade. It continues east and crosses South Coppell Road at grade and is on an aerial structure over Grapevine Creek. It is on retained fill until it crosses South Denton Tap Road, where it is a grade-separated aerial structure. The alignment then runs parallel to Belt Line Road and crosses Moore Road, Mockingbird Lane, MacArthur Boulevard, and Fairway Drive at grade. The profile gradually ascends on retained fill to an aerial structure over two floodplain areas just west of the Elm Fork Branch of the Trinity River. The Section 1 alignment ends just before the Elm Fork Branch of the Trinity River.

This section includes the DFW Terminal B Station (to be constructed by the T) and DFW North Station (portions of which would be constructed by both transit agencies).

Cypress Waters Design Options:
Section 1 has two alternatives that deviate from the existing alignment in the vicinity of North Lake and the planned Cypress Waters mixed-use development.

Cypress Waters Southwestern Boulevard Alternative: This alternative begins at South Coppell Road as a single track alignment on new location and veers to the southeast, generally following Southwestern Boulevard and relocated Belt Line Road. It is on an aerial structure over Grapevine Creek and is grade-separated at South Denton Tap Road with an aerial structure. The alignment then descends to at-grade and turns northeast to rejoin the existing Cotton Belt alignment at Moore Road.

Cypress Waters South Alternative: This alternative begins at South Coppell Road as a single track alignment on new location and veers to the southeast, similar to the Southwestern Boulevard Alternative; however, this alternative is located south of Southwestern Boulevard and Belt Line Road. It is on an aerial structure over Grapevine Creek and is grade-separated at South Denton Tap Road with an aerial structure. The alignment then descends to at-grade and turns northeast to rejoin the existing Cotton Belt alignment at Moore Road.

The Cypress Waters alternatives include the North Lake Station.

Section 2
Section 2 begins on a structure over the Elm Fork Branch of the Trinity River. It then continues to run just north of Belt Line Road and under the President George Bush Turnpike and crosses Luna Road at-grade. The alignment continues east, crosses the Hutton Branch of the Trinity River, then travels under IH 35E aerial bridges as well as under the DART Green Line aerial bridges. The station at the downtown Carrollton location will serve as the interface with the DART Green Line. East of the station, the alignment is on an aerial structure over the Burlington Northern Santa Fe Railway (BNSF) freight tracks (Madill Sub). In downtown Carrollton, portions of the existing Cotton Belt and the existing Madill Sub would be realigned to facilitate grade-separation of the two rail corridors. The alignment continues east toward Addison crossing the intersecting streets at-grade. The alignment offset varies between 20 and 30 ft to eliminate
impacts to existing storage tracks in the Addison industrial area. In Addison, the alignment is on an aerial structure over Midway Road but the freight track would remain at-grade. The Section 2 alignment ends at the southbound frontage road of the Dallas North Tollway.

This section includes the Downtown Carrollton Station and the Addison Transit Center Station.

Section 3

Section 3 begins just west of the Dallas North Tollway and remains grade separated over the main lanes. It continues as double track and the centerlines are set at 16-ft track centers. The alignment crosses Knoll Trail Drive at-grade, crosses over White Rock Creek, and then traverses slightly to the northeast so the alignment does not impact the existing Preston Road bridge columns. At this point, three profile options will be considered through a 2.6 mile section between Preston Road and Meandering Way in the North Dallas area.

North Dallas Design Options

At-grade Profile Option: This profile option would operate at-grade through North Dallas and would use bridges at the three creek crossings locally known as McKamy Branch, Osage Branch Crossing #1 and Osage Branch Crossing #2. The At-grade Profile Option crosses the roadways of Davenport Road (twice), Campbell Road, Hillcrest Road, McCallum Boulevard and Meandering Way at-grade.

Trench Profile Option: This profile option combines a maximum trench depth with walls and berms to maintain a 15 foot wall top over the rail with the use of culverts instead of bridges at the creek crossings of McKamy Branch, Osage Branch Crossing #1 and Osage Branch Crossing #2. The roadways of Davenport Road (twice), Campbell Road, Hillcrest Road, McCallum Boulevard and Meandering Way would be elevated over the proposed rail alignment.

Tunnel Profile Option: This alternative proposes a 2.6 mile long tunnel section that starts west of Preston Road and ends west of Coit Road. It includes a 0.7 mile long west portal, a 0.3 mile long east portal, and a 1.6 mile long tunnel. The tunnel would be located entirely within a limestone rock formation. Generally, the tunnel runs parallel to and below an unnamed tributary to White Rock Creek, which splits into the McKamy Branch and the Osage Branch. The tunnel crosses under the creek three times at McKamy Branch, Osage Branch Crossing #1, and Osage Branch Crossing #2. The depth of overburden above the tunnel crown is between 20 and 40 ft. The shallow cover areas are near the portal structures and below the creek crossings.

After passing through the North Dallas area where the three options described above are being considered, the alignment will pass under grade-separated Coit Road. The Cotton Belt Project continues east and will cross Water Parkway, KCS Railway, Synergy Park Boulevard, Renner Road, and Custer Parkway at-grade. The track centers vary between 16 and 33 ft to allow the placement of the center platform station that is located between Waterview Parkway and KCS Railway.
The section includes the Knoll Trail Station, Preston Road Station, Renner Village Station (two options are being considered—either Dickerson Street or Coit Road) and University of Texas-Dallas (UTD)/Synergy Station.

Red Line Interface Design Options

The final length of the Section 3 alignment begins at Alma Road and includes two alternatives.

North Alternative: The Red Line Interface North Alternative follows the Cotton Belt track alignment, travels under the existing President George Bush Tollway Bridge, crosses over US Highway (US) 75, interfaces with the DART Red Line and travels east, terminating near Shiloh Road.

This alternative includes an at-grade 12th Street Station and Shiloh Road Station.

South Alternative with Depressed Freight: The Red Line South Alternative deviates from the existing alignment and veers southerly away from the President George Bush Turnpike, crosses the floodplain and US 75 on an aerial structure, then turns north and descends to the Bush Turnpike Station and adjacent existing Red Line station. From this station, the alignment travels north and parallel to the DART Red Line. Near 12th Street, the alignment then takes a sharp right turn and ascends on aerial structure to an aerial 12th Street Station. In this area, the existing freight track would be depressed between 10th Street and N Avenue. K Avenue and Municipal Avenue will be reconstructed to cross the depressed freight track at-grade. The remainder of this section travels east on the existing Cotton Belt alignment terminating near Shiloh Road.

This alternative includes the Bush Turnpike Station, an aerial 12th Street Station, and the Shiloh Road Station.

3.0 PROJECT SETTING

Topography, Drainage and Geology

Tarrant, Dallas, and Collin Counties are located in north-central Texas within the Western Timbers and Blackland Prairie physiographic regions. The project area topography is typically nearly level to gently sloping, with steeper slopes along the drainages of Cottonwood Branch, Grapevine Creek, the Elm Fork of the Trinity River, and White Rock Creek, ranging in elevation from 500 to 700 ft above mean sea level (amsl). These drainages are part of the northern portion of the Trinity River Basin; the major drainage within the project area is the Elm Fork of the Trinity River. The subsurface geology of the project area is primarily within the Upper Cretaceous Eagle Ford and Austin Group Formations, with Holocene alluvium within the vicinity of the Elm Fork of the Trinity River, and Pleistocene fluvialite terrace deposits (Qt) immediately east of the Elm Fork (BEG 1987, 1991, 1996).
Vegetation and Land Use

The project area is located in portions of the Eastern Cross Timbers and the Blackland Prairies, Ecological sub-regions (BEG 1996). The soils of the Cross Timbers region to the west support mixed forests of post oak (*Quercus stellata*), blackjack oak (*Quercus marilandica*) and hickory (*Carya buckleyi*), as well as native tall grasses of wheatgrass (*Agropyron smithii*), bluestem (*Andropogon spp.*), beardgrass (*Stipa leucotricha*), and Gypfill-grass (*Triodia pilosa*). The Blackland Prairie soils to the east support vegetation consisting of bunch and short grasses of Indian (*Sorghastrum halepense*), buffalo (*Medicago sativa*), and big and little bluestems types (*Andropogon spp.*), along with mesquite (*Prosopis glandulosa*), cacti, and shrubs. Both regions support native trees of ash (*fraxinus pensylvanica*), pecan (*Carya illinoinensis*), hackaberry (*Celtis occidentalis*), elm (*Ulmus procera*), and cottonwood (*Populus fremontii*) (Blair 1950; Kartesz and Thieret 1991).

Soils

The soils of the proposed project corridor within the portions of Tarrant, Dallas, and Collin Counties have been classified into eight broad map units, from west to east, comprising 44 named soil units. Table 1 lists the characteristics of the named soil units within the project area (Coffee et al. 1975; Hanson and Wheeler 1969; Ressel et al. 1980; USDA 2012). The nine broad map units within the proposed project corridor are listed below by county, with the Trinity-Frio association occurring in both Dallas and Collin counties.

Tarrant County:
- **Houston Black-Navo-Heiden:** Gently sloping, deep, clayey and loamy soils; on uplands.

Dallas County:
- **Houston Black-Heiden:** Deep, nearly level to strongly sloping, clayey soils; on uplands.
- **Ferris-Heiden:** Deep, gently sloping to strongly sloping, clayey soils; on uplands
- **Trinity-Frio:** Deep, nearly level, clayey soils; on flood plains.
- **Eddy-Stephen-Austin:** Very shallow, shallow, and moderately deep, gently sloping to moderately steep, loamy and clayey soils; on uplands.
- **Austin-Houston Black:** Moderately deep and deep, nearly level to sloping, clayey soils; on uplands.

Collin County:
- **Houston Black-Houston:** Gently sloping to sloping, clayey soils that are deep over compact clays; on uplands.
- **Houston Black-Burleson:** Nearly level to gently sloping, deep, clayey soils on stream terraces.
- **Trinity-Frio:** Deep nearly level, clayey soils, on flood plains.
Table 3-1: Soils within the Project Area and Their Characteristics

<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Type</th>
<th>Slope (%)</th>
<th>Average Depth (inches)</th>
<th>Landform location</th>
<th>Parent Material</th>
<th>Geoarchaeological Potential (<1 m)</th>
<th>Geoarchaeological Potential (>1 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarrant County Soil Map Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferris-Heiden Complex</td>
<td>Clay</td>
<td>2-5</td>
<td>40-60</td>
<td>Ridges on plains</td>
<td>Residuum weathered from calcareous shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Heiden</td>
<td>Clay</td>
<td>1-3</td>
<td>60+</td>
<td>Ridges on plains</td>
<td>Residuum weathered from calcareous shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Houston black</td>
<td>Clay</td>
<td>1-3</td>
<td>60+</td>
<td>Ridges on plains</td>
<td>Residuum weathered from calcareous shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Justin</td>
<td>Loam</td>
<td>1-3</td>
<td>60+</td>
<td>Ridges on hills</td>
<td>Loamy slope alluvium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Leson</td>
<td>Clay</td>
<td>1-3</td>
<td>60+</td>
<td>Ridges on plains</td>
<td>Residuum weathered from calcareous shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Navo</td>
<td>Clay loam</td>
<td>1-3</td>
<td>80</td>
<td>Ridges on plains</td>
<td>Loamy residuum weathered from sandstone and shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Trinity</td>
<td>Clay</td>
<td>0-1, frequently flooded</td>
<td>80</td>
<td>Flood plains on river valleys</td>
<td>Clayey alluvium of Holocene age derived from mixed sources</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Wilson</td>
<td>Clay loam</td>
<td>0-2</td>
<td>80</td>
<td>Paleoterraces on plains</td>
<td>Clayey alluvium of Quaternary age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Dallas County Soil Map Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altoga</td>
<td>Silty clay</td>
<td>5-12</td>
<td>60</td>
<td>Stream terraces on plains</td>
<td>Clayey alluvium derived from mixed sources</td>
<td>Low-moderate</td>
<td>Low-moderate</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Type</td>
<td>Slope (%)</td>
<td>Average Depth (inches)</td>
<td>Landform location</td>
<td>Parent Material</td>
<td>Geoarchaeological Potential (<1 m)</td>
<td>Geoarchaeological Potential (>1 m)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Arents</td>
<td>Loam</td>
<td>1-3, gently undulating</td>
<td>60</td>
<td>Reclaimed lands on plains</td>
<td>Loamy alluvium of Quaternary age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Arents</td>
<td>Loam</td>
<td>10-30, hilly</td>
<td>60</td>
<td>Reclaimed lands on plains</td>
<td>Loamy alluvium of Quaternary age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Austin</td>
<td>Silty clay</td>
<td>1-3</td>
<td>20-40</td>
<td>Ridges on plains</td>
<td>Residuum weathered from chalk</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Austin</td>
<td>Urban land complex</td>
<td>0-2</td>
<td>20-40</td>
<td>Ridges on plains</td>
<td>Residuum weathered from chalk</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Burleson</td>
<td>Clay</td>
<td>0-1</td>
<td>60</td>
<td>Stream terraces on river valleys</td>
<td>Clayey alluvium of Pleistocene age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Burleson</td>
<td>Clay</td>
<td>1-3</td>
<td>60</td>
<td>Stream terraces on river valleys</td>
<td>Clayey alluvium of Pleistocene age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Crockett</td>
<td>Fine sandy loam</td>
<td>1-3</td>
<td>Densic bedrock material</td>
<td>Ridges on plains</td>
<td>Residuum weathered from shale of Tertiary age</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Crockett</td>
<td>Fine sandy loam</td>
<td>2-5, eroded</td>
<td>Densic bedrock material</td>
<td>Ridges on plains</td>
<td>Residuum weathered from shale of Tertiary age</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Dalco</td>
<td>Clay</td>
<td>1-3</td>
<td>Paralithic bedrock, 24-40</td>
<td>Ridges on plains</td>
<td>Residuum weathered from Austin Chalk formation</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Dalco</td>
<td>Urban land complex</td>
<td>0-3</td>
<td>Paralithic bedrock, 24-40</td>
<td>Ridges on plains</td>
<td>Residuum weathered from Austin Chalk formation</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Type</td>
<td>Slope (%)</td>
<td>Average Depth (inches)</td>
<td>Landform location</td>
<td>Parent Material</td>
<td>Geoarchaeological Potential (<1 m)</td>
<td>Geoarchaeological Potential (>1 m)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Dutek</td>
<td>Loamy fine sand</td>
<td>1-5</td>
<td>60</td>
<td>Stream terraces on river valleys</td>
<td>Sandy alluvium</td>
<td>Low-Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Eddy</td>
<td>Clay loam</td>
<td>3-8</td>
<td></td>
<td>Paralithic bedrock, 3-15</td>
<td>Residuum weathered from Austin Chalk formation</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Eddy-Stephen Complex</td>
<td>Clay loam – Silty clay</td>
<td>1-5</td>
<td></td>
<td>Paralithic bedrock, 3-15</td>
<td>Residuum weathered from Austin Chalk formation</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Eddy Urban land complex</td>
<td>Clay loam - Urban land</td>
<td>1-4</td>
<td></td>
<td>Paralithic bedrock, 3-15</td>
<td>Residuum weathered from Austin Chalk formation</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Eddy Urban land complex</td>
<td>Clay loam - Urban land</td>
<td>4-8</td>
<td></td>
<td>Paralithic bedrock, 3-15</td>
<td>Residuum weathered from Austin Chalk formation</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Ferris-Heiden Complex</td>
<td>Clay</td>
<td>5-12</td>
<td>Densic bedrock, 40-60</td>
<td>Ridges on plains</td>
<td>Residuum weathered from calcareous shale in Eagleford Shale and Taylor Marl formations of Cretaceous age</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Ferris Urban land complex</td>
<td>Clay - Urban land</td>
<td>5-12</td>
<td>Densic bedrock, 40-60</td>
<td>Ridges on plains</td>
<td>Residuum weathered from calcareous shale in Eagleford Shale and Taylor Marl formations of Cretaceous age</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Frio</td>
<td>Silty clay</td>
<td>0-2, Frequently flooded</td>
<td>60+</td>
<td>Flood plains on plains</td>
<td>Loamy alluvium of Holocene age derived from mixed sources</td>
<td>Very high</td>
<td>Very high</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Type</td>
<td>Slope (%)</td>
<td>Average Depth (inches)</td>
<td>Landform location</td>
<td>Parent Material</td>
<td>Geoarchaeological Potential (<1 m)</td>
<td>Geoarchaeological Potential (>1 m)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Frio-Urban land complex</td>
<td>Silty clay - Urban land</td>
<td>0-2</td>
<td>60+</td>
<td>Flood plains on plains</td>
<td>Loamy alluvium of Holocene age derived from mixed sources</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Heiden</td>
<td>Clay</td>
<td>2-5, eroded</td>
<td>60+</td>
<td>Ridges on plains</td>
<td>Clayey residuum weathered from clayey shale of Eagleford Shale or Taylor Marl</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Houston Black</td>
<td>Clay</td>
<td>0-1</td>
<td>60+</td>
<td>Plains on plains</td>
<td>Residuum weathered from calcareous shale or Taylor Marl and Eagleford Shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Houston Black</td>
<td>Clay</td>
<td>1-3</td>
<td>60+</td>
<td>Ridges on plains</td>
<td>Residuum weathered from calcareous shale or Taylor Marl and Eagleford Shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Houston Black – Urban land complex</td>
<td>Clay - Urban land</td>
<td>0-4</td>
<td>60+</td>
<td>Ridges on plains</td>
<td>Residuum weathered from calcareous shale of Taylor Marl and Eagleford Shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Lewisville</td>
<td>Silty clay</td>
<td>1-3</td>
<td>60+</td>
<td>Stream terraces on river valleys</td>
<td>Alluvium of Quaternary age derived from mixed sources</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Lewisville-Urban land complex</td>
<td>Silty clay - Urban land</td>
<td>0-4</td>
<td>60+</td>
<td>Stream terraces on river valleys</td>
<td>Alluvium of Quaternary age derived from mixed sources</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Lewisville-Urban land complex</td>
<td>Silty clay - Urban land</td>
<td>4-8</td>
<td>60+</td>
<td>Stream terraces on river valleys</td>
<td>Alluvium of Quaternary age derived from mixed sources</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Mabank</td>
<td>Fine sandy loam</td>
<td>0-1</td>
<td>60+</td>
<td>Stream terraces on plains</td>
<td>Clayey alluvium of Quaternary age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Type</td>
<td>Slope (%)</td>
<td>Average Depth (inches)</td>
<td>Landform location</td>
<td>Parent Material</td>
<td>Geoarchaeological Potential (<1 m)</td>
<td>Geoarchaeological Potential (>1 m)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Seagoville</td>
<td>Clay, occasionally flooded</td>
<td>0-1</td>
<td>60+</td>
<td>Flood plains on river valleys</td>
<td>Clayey alluvium of Holocene age derived from mixed sources and/or loamy alluvium of Holocene age derived from mixed sources</td>
<td>Moderate</td>
<td>Moderate-low</td>
</tr>
<tr>
<td>Silawa</td>
<td>Fine sandy loam</td>
<td>3-8</td>
<td>60+</td>
<td>Stream terraces on river valleys</td>
<td>Sandy alluvium</td>
<td>Low-moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Stephen-Urban land complex</td>
<td>Silty clay - Urban land</td>
<td>1-4</td>
<td>Paralithic bedrock 7-20</td>
<td>Ridges on plains</td>
<td>Residuum weathered from Austin chalk formation</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Trinity</td>
<td>Clay, occasionally flooded</td>
<td>0-1</td>
<td>60+</td>
<td>Flood plains on river valleys</td>
<td>Clayey alluvium of Holocene age derived from mixed sources</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Trinity</td>
<td>Clay</td>
<td>0-1, frequently flooded</td>
<td>60+</td>
<td>Flood plains on river valleys</td>
<td>Clayey alluvium of Holocene age derived from mixed sources</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Trinity-Urban land complex</td>
<td>Clay - Urban land</td>
<td>0-1</td>
<td>60+</td>
<td>Flood plains on river valleys</td>
<td>Clayey alluvium of Holocene age derived from mixed sources</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Wilson</td>
<td>Clay loam</td>
<td>0-1</td>
<td>60+</td>
<td>Stream terraces on plains</td>
<td>Clayey alluvium of Quaternary age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Wilson</td>
<td>Clay loam</td>
<td>1-3</td>
<td>60+</td>
<td>Stream terraces on plains</td>
<td>Clayey alluvium of Quaternary age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Wilson-Urban land complex</td>
<td>Clay loam / Urban land</td>
<td>0-2</td>
<td>60+</td>
<td>Paleoterraces on plains</td>
<td>Clayey alluvium of Quaternary age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Collin County Soil Map Units
<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Type</th>
<th>Slope (%)</th>
<th>Average Depth (inches)</th>
<th>Landform location</th>
<th>Parent Material</th>
<th>Geoarcheological Potential (<1 m)</th>
<th>Geoarcheological Potential (>1 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin</td>
<td>Silty clay</td>
<td>1-3</td>
<td>Paralithic bedrock 20-40</td>
<td>Ridges on plains</td>
<td>Residuum weathered from chalk</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Austin</td>
<td>Silty clay</td>
<td>3-5</td>
<td>Paralithic bedrock 20-40</td>
<td>Ridges on plains</td>
<td>Residuum weathered from chalk</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Burleson</td>
<td>Clay</td>
<td>0-1</td>
<td>60+</td>
<td>Stream terraces on river valleys</td>
<td>Clayey alluvium of Pleistocene age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Burleson</td>
<td>Clay</td>
<td>1-3</td>
<td>60+</td>
<td>Stream terraces on river valleys</td>
<td>Clayey alluvium of Pleistocene age derived from mixed sources</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Houston black</td>
<td>Clay</td>
<td>0-1</td>
<td>60+</td>
<td>Plains on plains</td>
<td>Residuum weathered from calcareous shale of Taylor Marl and Eagleford Shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Houston black</td>
<td>Clay</td>
<td>1-3</td>
<td>60+</td>
<td>Plains on plains</td>
<td>Residuum weathered from calcareous shale of Taylor Marl and Eagleford Shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Houston black</td>
<td>Clay</td>
<td>2-4, eroded</td>
<td>60+</td>
<td>Ridges on plains</td>
<td>Residuum weathered from calcareous shale of Taylor Marl and Eagleford Shale</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Lewisville</td>
<td>Silty clay</td>
<td>3-5, eroded</td>
<td>60+</td>
<td>Stream terraces on river valleys</td>
<td>Alluvium of Quaternary age derived from mixed sources</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Stephen</td>
<td>Silty clay</td>
<td>1-3</td>
<td>Paralithic bedrock 7-20</td>
<td>Ridges on plains</td>
<td>Residuum weathered from Austin chalk formation</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Type</td>
<td>Slope (%)</td>
<td>Average Depth (inches)</td>
<td>Landform location</td>
<td>Parent Material</td>
<td>Geoarchaeological Potential (<1 m)</td>
<td>Geoarchaeological Potential (>1 m)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Stephen-Eddy complex</td>
<td>Silty clay – gravelly clay loam</td>
<td>3-5, eroded</td>
<td>7-20</td>
<td>Ridges on plains</td>
<td>Residuum weathered from Austin chalk formation</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Sources: Coffee et al. 1975; Hansen and Wheeler 1969; Ressell et al. 1980; USDA 2012
4.0 PREHISTORIC CULTURE HISTORY

The project area lies within the northwestern portion of the Eastern Archeological Planning Region as defined by the THC (Kenmotsu and Perttula 1993). Specifically, Tarrant County is within the Prairie-Savanna Study Region. Researchers in north-central Texas have divided the area into four primary chronological periods based on knowledge as interpreted from the Joe Pool Lake investigations (Peter and McGregor 1988). These four periods are Paleoindian, Archaic, Late Prehistoric, and Protohistoric. A fifth period, Historic, has been added to include the European settlement of the area.

Paleoindian

The Paleoindian period in north-central Texas (ca. 11,000–6,500 B.C.) is characterized by assemblages associated with the terminal late Pleistocene and early Holocene epochs (Hofman 1989; Prikryl 1990; Story 1990). Projectile point types often associated with the Paleoindian period include Clovis, Folsom, Dalton, Plainview, San Patrice, and Scottsbluff. Prikryl (1990) suggests that the most common types are Dalton and Plainview. While diagnostic projectile points have been identified from surface or stratigraphically mixed contexts, undisturbed Paleoindian components in the Trinity River valley are rare (Meltzer 1987). The Field Ranch site (41CO10) along the upper Elm Fork in Cooke County provides an example of a typical Paleoindian site setting in the Prairie-Savanna Study Region (Jensen 1968). Clovis, Folsom, Plainview, and Hell Gap point types have been collected from the surface of the site. However, excavations at Field Ranch have failed to locate undisturbed artifacts in primary context (Jensen 1968).

The generally low density of Paleoindian artifacts and sites and the tendency for projectile points to be made from non-local lithic materials have led investigators to believe that these populations were highly mobile (Lynott 1981:100-101). Megafauna fossil finds within the region suggest that the subsistence practices of Paleoindian peoples were linked to the hunting and processing of mammoth and bison. Kill or butchering sites, similar to those identified for the Southern Plains, however, have yet to be discovered in north-central Texas (Prikryl 1990, 1993).

Two archaeological sites with discrete Paleoindian components have been investigated in north-central Texas. The Lewisville Lake (41DN71) and the Aubrey sites (41DN479) have produced Clovis points that date to the early part of the Paleoindian period. These sites are situated in Denton County, just east of the northern part of the Fort Worth District. The Lewisville Lake site contained 27 hearth features, a sparse lithic scatter in a near-surface context, and one Clovis point (Crook and Harris 1957, 1958; Story 1990:182-184). The somewhat more spectacular Aubrey site contained chipped stone debitage and Clovis points buried beneath eight meters of alluvium on the Elm Fork floodplain (Ferring 1989). The discovery of this site may indicate that undisturbed Paleoindian components in north-central Texas will only be found by examining deeply stratified Holocene alluvium in modern floodplain situations.
The faunal material recovered from Lewisville Lake and Aubrey tends to indicate that the general subsistence patterns for Paleoindian groups in north-central Texas differ slightly from those in adjacent areas. While bison and mammoth dominate the faunal assemblage from kill sites in the Southern Plains, the remains of deer and other small game, such as rabbit, squirrel, fish, and turtle (Ferring 1989; Ferring and Yates 1997) recovered from Lewisville Lake and Aubrey could be interpreted as a more generalized pattern of foraging (Hofman 1989:31-32). Such a divergence in subsistence patterns may reflect an inherent adaptability of Clovis technology to changing environmental conditions that were encountered as these populations spread southeastward into Texas from the Southern Plains (Ferring and Yates 1997). Other recent investigations in Texas and elsewhere support the notion that early Paleoindian economies may have varied regionally but were a flexible pan-continental mechanism of adaptation during the late Pleistocene, which was a time of rapid environmental change (Tankersley 1998).

Archaic

The Archaic period in north-central Texas is tentatively dated to between 6,500 B.C. and A.D 700, with a threefold division of the period consisting of the Early, Middle, and Late Archaic subperiods (Prikryl 1990). The Early Archaic has been dated from roughly 6,500 to 4,000 B.C., the Middle Archaic from 4,000 to 1,500 B.C., and the Late Archaic from 1,500 B.C. to A.D. 700 (Hofman 1989; Prikryl 1990; and Story 1985, 1990). Diagnostic artifacts for this period are similar to those found in adjacent regions, although the development of a sound chronological sequence of diagnostic artifacts has proven difficult because many of the investigations have focused on surface manifestations. The initial treatment of the Archaic period in north-central Texas (Crook and Harris 1952, 1954) defined the Carrolton and Elam foci based on materials recovered from mixed terrace contexts. These constructs are no longer recognized as viable classifications for this area of Texas (Peter and McGregor 1988; Prikryl 1990; Yates and Ferring 1986).

The general trends that characterize the Archaic period suggest distinct human adaptations to environmental change, resulting in increasingly complex settlement systems, increasing population size and density, gradually decreasing mobility, and development of distinct group territories (Prikryl 1990; Story 1985:52). These conditions may have led Archaic populations of the Cross Timbers and prairie areas of north-central Texas to develop a more diversified hunting and gathering pattern based on bottomland resources of the rivers and major creeks, while populations on the plains focused on bison hunting (Hofman 1989). There is evidence that Archaic populations used mainly local lithic materials, further suggesting that these populations were significantly less mobile than populations during the Paleoindian period. A reduction in mobility may also suggest a refinement and intensification of resources within more restricted areas of procurement. Archaic remains are typically found in upland settings and are often encountered in contexts that are mixed with later material. Archaeological investigations along the West Fork of the Trinity River (Peter and McGregor 1988; Yates and Ferring 1986) suggests
that primary contexts for Early and Middle Archaic sites will most likely be found deeply buried within flood plain alluvium.

During the Early Archaic, the occurrence of small, widely distributed sites has been suggested to reflect high group mobility within large and poorly defined territories, supported by a generalized hunting-and-gathering economy (Meltzer and Smith 1986; Story 1985:35, 39). Early Archaic occupations in north-central Texas are poorly known, and no sites with isolated Early Archaic components have been located. Projectile point forms commonly associated with the Early Archaic in north-central Texas include early split-stemmed varieties and possibly the Angostura point type (Prikryl 1990; Story 1990).

The Middle Archaic period in north-central Texas is less-represented than the Early Archaic, with fewer known sites that contain Middle Archaic-age components than for any other subperiod. The few surface collections that have been studied include basal-notched points (such as Calf Creek, Bell, and Andice types), and Wells, Dawson, Carrolton, and Bulverde point types (Prikryl 1990; Story 1990). An intact Middle Archaic component was identified at the Calvert site (41DN103) at Lake Ray Roberts in Denton County that included a burial, hearths, and an unmixed assemblage of artifacts and fauna (Ferring and Yates 1997:305). The authors suggest that the faunal remains indicated that the climate may have been drier, and that the homogeneity of artifact types with adjacent regions might suggest that Middle Archaic groups enjoyed broader cultural interactions (Ferring and Yates 1997:305).

The Late Archaic period is characterized by an increase in population, as evidenced by the number and distribution of sites in the region. These changes were coupled with an overall decrease in group mobility and a general reduction in cultural interaction with neighboring groups. These inferences are drawn from the presence of a more diverse tool technology, which reflects a broadening in subsistence strategies and an increasing reliance on locally available floral and faunal resources (Prikryl 1990). There seems to be a greater variety in projectile points associated with the Late Archaic, including Castrovilla, Dallas, Elam, Ellis, Edgewood, Godley, Gary, Marshall, Palmillas, Trinity, and Yarbrough point types (Prikryl 1990; Story 1990).

The documentation of large pits associated with the Late Archaic period in the Richland Creek and Chambers Creek drainages suggest that important sociopolitical changes may have occurred during this period (Bruseth and Martin 1987). Unfortunately, the significance of these pits remains an enigma, despite their excellent documentation. Late Archaic period deposits along the Denton Creek drainage (Anthony and Brown 1994) suggest an increased reliance on freshwater shellfish, possibly indicating the decreased availability of large mammals, decreasing territory size, or resource specialization.

Late Prehistoric

Societal changes, such as group aggregation and large-scale manipulation of subsistence resources, become evident at the beginning of, and continue throughout, the Late Prehistoric period. Habitation structures in some areas indicate increased sedentism coupled with the
introduction of cultigens such as corn. The appearance of arrow points and ceramics indicate important technological changes and signal the beginning of the period. Both Lynott (1977) and Prikryl (1990) propose a division of the Late Prehistoric period into an early and late phase, based on projectile point type and ceramic type data. The early phase reflects the continuation of a foraging subsistence pattern while the late phase reflects influences from the Southern Plains. The early phase, which dates between A.D. 700 and 1200, is characterized by sand and grog-tempered ceramics and Scallorn, Steiner, Catahoula, and Alba arrow points (Lynott 1977; Prikryl 1990). Evidence for crop cultivation and structures in this phase has been found at Mountain Creek Lake near the Red River (Lorrain 1969; Peter and McGregor 1988).

The late phase, dating from A.D. 1200 to 1600, is associated with the appearance of Nocona Plain ceramics of the Henrietta focus, various unstemmed triangular points such as Maud, Fresno, Harrell, and Washita, and the stemmed Perdiz point (Lynott 1977; Prikryl 1990). Evidence of horticulture and bison procurement also appears in sites for this period (Harris and Harris 1970; Morris and Morris 1970). It is at this time that influences from the Southern Plains become more pronounced in the Cross Timbers and prairie areas. Bison herd sizes are thought to have increased at this time, (Baugh 1986; Prewitt 1981; Suhm 1957; Yates 1982) leading to an increased reliance on bison for subsistence. This is reflected in terms of technology, with a Plains Indian-type tool assemblage becoming common. This shift is reflected further in the appearance of specialized tools, such as thumbnail snub-nosed scrapers and alternatively beveled or Harahey knives. Bison scapula hoes, which also are common in Plains Indian sites, have been recovered from sites in the Lewisville Lake and Lavon Lake areas of north-central Texas (Barber 1969; Harris 1945). Speth and Scott (1989) suggest that the apparent increase in bison exploitation ca. A.D. 1300 may not reflect an increase in bison population so much as an increase in the need for high-quality protein as a result of increasing dependence on maize cultivation, coupled with settlement aggregation. However, the changes seen in the subsistence strategies of the horticultural societies present in the region could be due to both an increase in the availability of bison and a concomitant need for high-quality protein from bison meat (Creel 1991).

Protohistoric

The period from A.D. 1600 to 1800 has been designated the Protohistoric period in north-central Texas. Prior to the founding of New Mexico in 1598, the European presence in the Southwest and the Southern Plains had been sporadic at best. While various French and Spanish contact is reported for the state of Texas, it was not until the seventeenth century that a pronounced European influence was felt in the region, and not until the nineteenth century that the physical presence of Europeans became commonplace on the Southern Plains.

Unfortunately, since reliable historical information is very limited for the upper Trinity River basin during the Protohistoric period, it is not clear which specific aboriginal groups were residing in north-central Texas at the beginning of this period. What is clear is that the Protohistoric period in the area was a time of population fluctuation, movement, and
amalgamation (Newcomb 1993). Available data suggests that the aboriginal occupants of north-central Texas were Caddoan-language speakers, likely members of the Wichita Confederacy; however Caddo and Kichai occupations were certainly possible. The term “Wichita” has been used to refer to a group of linguistically related tribes, including the Wichita, Taovayas, Tawakoni, Yscai, Waco, and Kichai, many of whom apparently entered the Southern Plains in the seventeenth century to escape the hostilities of the Osage (Webb and Carroll 1952:2:904). Other groups intermittently occupying the area would have included Comanche, Kiowa, and possibly Lipan Apache, although archaeological remains of these groups are even less identifiable than the other early Protohistoric Native American groups.

Groups associated with the Wichita Confederacy were sedentary Plains Villagers and, therefore, left much more substantial archaeological remains. A number of villages belonging to the historic Wichita groups have been identified in Oklahoma, north-central Texas, and northeast Texas (Bell 1984; Fox 1983:41-43). While no extensive excavations of Protohistoric Wichita sites have been conducted in the immediate area, data recovered from nearby Wichita sites shows a mixture of artifacts of Native American manufacture and of materials obtained by trade from the French or the Spanish. Artifacts of Native American manufacture include triangular arrow points such as Fresno, Harrell, and Washita, thick end scrapers, diamond-beveled knives, T-shaped perforators, bifacial gun flints, bison scapula hoes, pottery elbow pipes, and Womack Engraved pottery. Trade artifacts found to be present at Wichita sites include metal knives and knife handles, axes, splitting wedges, kettle fragments, awls, chisels, scissors, buttons, flintlock gun parts, bullets and shot, bridle parts, metal ornaments such as bells, finger rings, and bracelets, and numerous trade beads. Wichita sites on both the Brazos and Red Rivers were situated atop high terraces that overlook the rivers.

5.0 HISTORIC CONTEXT

A historic-age resource must not only meet the NRHP eligibility criteria and retain sufficient and appropriate levels of integrity, but it must also be related to the historic context (background) of the area in which it is situated. This chapter serves to present the historic context for the DART Cotton Belt project. A historic context is the framework on which the evaluation of NRHP eligibility criteria is based, and establishes significance based on themes, periods of significance, property types, and geographic areas. A historic-age resource must contribute to the significance established in the historic context of a relevant geographical area, which is related to the resource’s significance in American History, architecture, design, construction, and/or culture.

County and City Development

Tarrant County

Tarrant County is located in north-central Texas and is bordered by Dallas County to the east, Parker County to the west, Johnson County to the south, and Denton and Wise counties to the
north. The county is made up of 898 square miles and is fed by the Trinity River, which flows from the northwest to the southeast across the county. The Clear Fork and the West Fork of the river drain the western half of the county and various smaller tributaries drain the eastern half (Hightower 2012).

The historic period of Tarrant County is broadly defined as the time beginning when European-American settlement began on the continent. Although Spanish explorers and later French and European-American traders, trappers, and explorers traversed throughout Texas from the sixteenth century onward, the systematic European-American settlement of the project area did not begin until the establishment of the Peters Colony in August 1841. The Texas Land and Emigration Company of St. Louis (known as the Peters Colony) was an empresario grant received through a contract with the Republic of Texas. The land grant encompassed approximately 16,000 square miles in north Texas including modern-day Dallas/Fort Worth and the surrounding metropolitan area.

The population of Tarrant County rose dramatically during the 1850s. The 1850 census counted 599 white citizens and 65 slaves. While Fort Worth was abandoned as a military outpost in 1853, the majority of the settlers who had flocked to the area during the occupation of the fort remained after its abandonment. Buildings that were once part of the fort were converted into hotels, general stores, and doctors’ offices. The number of white occupants increased to 5,170 and the number of slaves increased to 850 by 1860. Following the growth in population during the first years of the 1860s were the detrimental effects of the Civil War and Reconstruction. Over the decade between 1860 and 1870, the population decreased, dropping from 6,020 to 5,788. The construction of the promised permanent courthouse was put on hold, and common items from flour to fabric were rationed (Hightower 2012).

The 1870s saw periods of prosperity for Tarrant County: The cattle business brought economic growth to the area, as cattle drives ran through the county on their way north. Local merchants capitalized on the opportunity to showcase their goods. Railways also brought development to the area. The Texas and Pacific Railway (T&P) designated Fort Worth as its eastern terminus for the route to San Diego, California in the early 1870s. The railroads had a significant economic effect on Tarrant County, as they made the shipping of cotton and wheat possible. Subsistence crop farming, such as the cultivation of corn and vegetables, decreased and was replaced with a rapid increase in cotton and wheat production. By 1890, the years of long cattle drives had ended, and more farmers moved to the area (Hightower 2012).

Grapevine

Grapevine, Texas is located along State Highway (SH) 121, 19 miles northwest of Dallas and 19 miles northeast of Fort Worth in Tarrant County. The area that eventually became Grapevine was settled in the late 1840s and early 1850s. The first store was opened by Archibald F. Leonard in 1849. Leonard was one of the Missouri Colonists, arriving to the area in 1845 from Platte County, Missouri. He and other settlers, including James Tracy Morehead and Henry Suggs, laid out the town and established a post office in 1854. By 1890 the town claimed 800
residents, three gristmills, four churches, three cotton gins, and a public school. Later that
decade, the Grapevine Sun newspaper began publication. By 1900, the St. Louis Southwestern
Railway (SLSW) was extended through Grapevine, accelerating growth so that by 1914 the town
had 1,200 residents and several businesses including grocers, hotels, and banks.

Due to the events leading up to the Great Depression, the population of Grapevine fell to 821 by
1925. Slowly, the town began to recover so that by 1940, the population had risen to 1,043
residents and the number of businesses had risen to 70. The town remained small, containing
only 5,000 people, until the opening of the DFW Airport in 1974, which created immediate
growth. In 1970, Grapevine’s population stood at 7,023. In 1980, the population increased to
11,801, and by 2000, Grapevine had 42,059 people (Payne and Fitzpatrick 1999; Young 2012).

Dallas County

Dallas County is located in north-central Texas and is bordered by Denton and Collin counties to
the north, Ellis County to the south, Kauffman and Rockwell counties to the east, and Tarrant
County to the west. Dallas County as a whole comprises 902 square miles of mostly flat, heavy
Blackland Prairie soils.

The County was formed by the Texas Legislature in 1846. It remained rural and agricultural
through 1920, although the presence of manufacturing and industry began to become more
pronounced. Cotton production in Dallas County was at its peak in 1900, while wheat and oats
had their largest crops in 1920. Reports also reveal that 1920 saw the largest number of farms
in the county.

The absence of rail transportation during its formative years slowed Dallas County’s growth.
From 1843 to 1850, goods were shipped by road to the nearest markets of Houston, Texas, and
Shreveport, Louisiana. The county was at the crossing of two roads: the Military Road from
Austin (south) to the Red River (north), which was completed in 1842, and Preston Road.
Preston Road was laid out in 1840 by Colonel W.G. Cooke and the First Texas Infantry Regiment
Texas soldiers. It served as a military road, beginning in Austin and terminating at the Coffee
trading post, adjacent to a fort established by Captain William Preston. The road was part of
the Central National Road of the Republic of Texas that had been authorized by the Eighth
Congress of the Republic of Texas (Cowling 1936:13). Between 1850 and 1870, the road was
heavily utilized for freight, immigration, and as a trail for driving cattle (Dunn 2000:15). Preston
Road remains a primary transportation route today, although it has been paved and designated
as SH 289 (Dunn 2000:14-15). By 1846, Dallas County approved the building of roads to
surrounding counties.

In 1872, the first railroad, the Houston and Texas Central Railroad (H&TC), was built through
Dallas County from the south to the north, passing through Hutchins, Oasis, Wilmer, and
Richardson. A year later, the T&P ran through the county and many communities prospered,
including Coppell, Irving/Las Colinas, Farmers Branch, Carrollton, Dallas, Addison, and
Richardson (Maxwell 2012a).
Coppell

The area, including the current city of Coppell, was part of a land grant issued to James Parrish from Goliad in 1848 (Coppell Historical Society 2012). By 1873, the town of Gibbs was established, named after Texas State Senator and Lieutenant Governor Barnett Gibbs who was a large landowner in the area. The SLSW (the Cotton Belt) was constructed and had established a “Gibbs Station” stop in 1889. The name of the small community and the post office was changed to Coppell in 1892. The name probably comes from George Coppell, a businessman associated with the railroads and local pioneer. By 1893, the town had four stores, a lumber yard, cotton gin, blacksmith shop and a school. In the next four years, the Baptist and Methodist churches were built. After the turn of the century, in 1908, another school building was constructed to the west of the downtown area. In 1909, the First State Bank of Coppell and the Coppell Informer newspaper were established. The town and the county worked together to fund a public well and trough that was located in the downtown area (Coppell Historical Society 2012).

At the turn of the century, the population of Coppell had reached 450 and the town boasted two churches, two general stores, two blacksmiths, a bank, a hardware store and telephone service. In the early 1920s, Coppell saw a decline in population to less than half of what was reported in 1914. The local bank closed in 1924. By the end of the 1920s, the three community schools, Bethel, Coppell and Gentry, were consolidated into one school. By 1930, the population had risen again to 400, comprising mostly of farmers and their families (Coppell Historical Society 2012).

The Works Progress Administration (WPA) built a park at Grapevine Springs in 1936, located near the site where Sam Houston tried to negotiate the first Indian Treaty for the Republic of Texas. By 1940, Coppell had 10 businesses, a cotton gin, two churches, and a school. The primary agricultural products produced in the area were cotton, wheat, peanuts, sweet potatoes, and melons (Nall 2012a).

By 1956, Coppell had grown enough to establish a city government, develop a city zoning plan and elect their first mayor, R.M. Johnson. The population reported in 1960 was 666 people with six businesses. The town was incorporated in 1962, with two square miles of land in the city limits (Coppell Historical Society 2012).

By the 1970s, the town had expanded north into Denton County and had constructed a new courthouse and the General Telephone Company building. When the DFW Airport opened in 1974, Coppell established a municipal utilities district. Coppell adopted a council-manager form of government and had a population of 2,500. The population continued to grow due to the location of the community. In 1984, the population was 3,826. Twenty years later, the population of the Coppell had almost reached 36,000 (Nall 2012a).

Irving/Las Colinas

The City of Irving, located in Dallas County near SHs 114 and 183/161, and 12 miles west of Dallas, was founded in December of 1903. Beginning in the mid-1800s, settlers had come into
the area between the Elm Fork and West Fork of the Trinity River. By 1857 Hezekiah Lucas had established a post office at Buck and Breck, a small community between Dallas and Birdville in Tarrant County (Hart 2012). Other communities in the area included Kit, Sowers, Hackberry, Finley and Elm School. Gorbit, or Kit as it was later called, had a post office from 1889 to 1894. The town was then moved and renamed Kit in anticipation of being located on the route of the railway. However, the railway changed its route and a third town site, Irving, was established (Welch 2012).

Irving was established as part of the expansion of the Chicago, Rock Island and Gulf Railway. J.O. Schulz and Otis Brown, surveyors for the railroad, bought 80 acres from the Britain family in 1902 and began to sell town site lots on December 19, 1903 (Hart 2012). The Post Office at nearby Kit was moved to Irving in 1904. In 1909, the Texas Legislature established the Irving Independent School District to serve the 190 students in the area. The following year, telephone service was started and in 1911, Lone Star Gas opened an Irving station. By 1912, the population of the community was 500 and the town included a bank, a newspaper, two churches and 20 businesses (Welch 2012). The town was incorporated on April 14, 1914 and Otis Brown, the town’s co-founder, was elected as the first mayor (Hart 2012).

By 1920, the population in Irving dropped to 357. However, the community continued to prosper by way of adding electric services, installing a water system, and organizing a volunteer fire department. The 1930s and 1940s saw population growth for Irving. In 1939, the city hired its first full-time employee town secretary, C.C. Anderson. By 1940, Irving hired their first paid patrolman to assist the elected constable. The next year, the town opened a public library (Hart 2012). By 1945, there were more than 200 businesses in the community and the School District had grown to 1,500 students and 42 teachers (Welch 2012).

Irving had a population of 2,615 in 1950. In order to gain the required population of 5,000 for a home rule charter election, the City Commissioners began to annex adjacent populated areas. The home rule charter election was held and passed on October 25, 1952 (Hart 2012). The University of Dallas built their campus in Irving in 1956. By 1960 the population had burgeoned to over 45,000 (Hart 2012). There were 730 businesses, three banks, two hospitals, 70 churches and 16 public schools by 1963 (Welch 2012).

The growth continued into the 1970s. Irving’s population was over 100,000 in 1970 and in 1971, Irving completed Texas Stadium, which served as the home of the Dallas Cowboys professional football team until 2009. In 1990, the population of the city was 155,037 and there were of 3,000 businesses. By 2000 the population reached 191,615 with 7,998 businesses (Welch 2012).

Las Colinas Urban Center, begun in 1973, is a planned development within the city limits of Irving. It was originally part of Hackberry Ranch, later El Ranchito de Las Colinas, which was owned and established by John W. Carpenter in 1928. By 1959, Carpenter had amassed 6,000 acres for the ranch, which was at that time managed by his son, Ben Carpenter, and Dan C. Williams. They began to develop portions of the ranch as residential areas. With the
announcement of the construction of DFW Airport in 1966, Carpenter and Williams began development of a master planned residential and commercial community. The development of the Las Colinas Urban Center started in 1973 and continued for over 25 years, encompassing approximately 7,000 acres. The development includes business parks, residential areas, a 125 acre man-made lake (Lake Carolyn), and a transportation system that includes the Area Personal Transit system, a system of elevated tracks and passenger vehicles, and the Mandalay Canal, a series of canals and water taxis. By 1979, the number of corporations in Las Colinas had reached 100. Ten years later, the community had expanded to 12,000 acres of business parks and residential development that included 2,000 single family homes and 9,000 residents living in apartments. By 1990, the area had a population of 19,000 (Nall 2012b).

Farmers Branch

Farmers Branch is located near Interstate IHs 35 and 635 within Dallas County, approximately 12 miles north of downtown Dallas. The town’s location was included in the original Peters Colony grant. The area was settled by Thomas and Sara Keenan, Isaac B. Webb and William Cochran in 1842, all of whom received original land grants. The town was originally called Mustang Branch, but the name was soon changed by Cochran to Farmers Branch due to the rich soils that made it ideal for cultivation (Maxwell 2012c). The settlement originally encompassed all the land between White Rock Creek on the east, the Elm Fork of the Trinity River on the west, Cedar Springs on the south and the Dallas County line on the north (City of Farmers Branch 2012). The settlement was extensively advertised in the eastern U.S. and in Europe and became one of the better known settlements in Texas between 1845 and 1850 (City of Farmers Branch 2012).

By 1845, a blacksmith shop and gristmill, owned by Baptist minister Reverend William Bowles, were in operation in Farmers Branch. That same year, Isaac B. Webb donated land for the construction of what was to be known as Webb’s Chapel Methodist Church. The church was also used as the community school, which was the first school in Dallas County. The farmers Branch Post Office was established in 1848 and Webb served as the first postmaster. Dr. Samuel Gilbert and his wife, Julia, came to the Farmers Branch area in 1855 after he purchased 307 acres of John Pullman’s Peters Colony headright. They built their stone house between 1855 and 1856, which still stands at the Farmers Branch historical park (Samuel and Julia Gilbert House National Register Nomination 1988).

In 1874, Dr. Gilbert and other members of the community sold land for ROW to ensure that the railroads would come to Farmers Branch. In 1877, the Dallas and Wichita Railroad built a depot and the following year the line came into Farmers Branch. The railroad went into receivership and was acquired by the Missouri, Kansas and Texas Railroad (MKT, aka Katy) in 1881 (Reed 2012a). By 1890, the Farmers Branch community had 100 citizens, a school district, two physicians, three general stores and two blacksmiths. The population reached 300 by World War I. The area was a farming center for grains and cotton. The community had several stores including a millinery store, a grocery, lumber yard and the Riddle Banking Company, as well as telephone and telegraph service. The population remained steady until World War II.
In 1946, citizens of the area learned that the city of Dallas was going to annex the Farmers Branch community. Led by Bill Dodson, they circulated a petition for incorporation. The citizens voted to approve incorporation and elected Dodson their first mayor. They hired their first city employees and established the water system and a fire department (RTHL 2007). In 1950, the population had reached 915. In 1956, Farmers Branch received a home-rule charter that provided for a council-manager form of government.

The town’s proximity to Dallas led to rapid growth. In 1960, the population was 13,441, comprised of individuals who mostly commuted to Dallas for work. By the mid-1970s, the population was 28,550. Several manufacturing firms were located in the city limits including tile, cement, machine parts, cosmetics, machine parts and food products. By the 1990s, the population had declined to 24,250. By 2000, however, the population had grown to 27,508 and by 2010, it had returned to 28,616.

Carrollton

Carrollton is located near IH 35 within Dallas, Denton and Collin counties. The site was in the original Peters Colony grant. The first settlers in the area were William and Mary Larner, who came to the area in 1842, followed by A.W. Perry and his family shortly thereafter. Perry settled in the Trinity Mills area where he established a mill with Wade H. Pitt. Perry acquired extensive landholdings, which likely included the site of present-day Carrollton and extended into Denton County. It is believed that Carrollton is named for Carrollton, Illinois, where many of the settlers originated (Perez 2012).

Originally, Carrollton was an agricultural community but in 1881, with the purchase and expansion of an unfinished rail line by the Missouri-Kansas-Texas Railway, Carrollton soon became a shipping center for livestock, grain, cotton, and cottonseed. A gravel industry began in 1912 and by the 1940s, Carrollton was known as a “grain and gravel” town. Other industrial plants that were established by 1950 include a brick factory and the National Metal Products, a manufacturer of metal utility cabinets and shelving (Perez 2012).

The first Baptist church in Dallas County was located near the present site of Carrollton. Around 1956, the Union Baptist Church became the site of the first community school. The post office was established in 1878. By 1885, with a population of 150 residents, the town was able to support cotton gins, flour mills, a school, and two churches (Perez 2012).

Around 1888, the Cotton Belt Railroad (formerly known as the SLSW) was constructed just north of the Carrollton Town Square and crossed the Katy tracks. A third railroad, the St. Louis-San Francisco Railroad or “Frisco” railroad was constructed in 1902. This line intersected the two earlier lines, thereby creating a unique rail junction that secured the future success and development of Carrollton. The City of Carrollton was incorporated on June 14, 1913 and by 1920 the city had a population of 573 and continued to grow and prosper. The population of Carrollton grew exponentially between 1970 and 1980 due to the Sun Belt boom: It increased by 193 percent to 40,595. By 2010, the population of the city had grown to 119,097. As the
population and available workforce grew, major industries moved to the city. These industries included auto-parts distribution, food packing, light manufacturing, and manufacturing of computers, semiconductors, and electric components. Although primarily industrial, Carrollton still maintained a working cattle ranch within its city limits as of 1983 (Perez 2012).

Dallas

The initial settlement of Dallas was founded on the eastern bank of the Trinity River by John Neely Bryan in November of 1841. This land was also included in the 16,000 square miles that the Texas Land and Emigration Company of St. Louis (known as the Peters Colony) received through a contract with the Republic of Texas. The town site was laid out in 1844 and in 1846; the Texas Legislature formed Dallas County. The town of Dallas became the permanent county seat in 1850 (McDonald 1978:10). By the 1850s, the town included a newspaper, a hotel, dry-goods stores, brickyards and two livery stables (McDonald 1978:10).

By 1860, the population of the town had reached 678. However, the advent of the Civil War meant that economic growth in the town and its surrounding area came to a standstill. Additionally, transportation in the area was impacted: stagecoach schedules were interrupted, there was no maintenance or construction of new roads, and railroad construction was halted for seven years. During the 1870s, the City of Dallas began a decade of expansion and development. Anticipating the arrival of the railroad, Dallas extended its city limits to the east by one mile in 1871. That same year, the H&TC announced plans to build a rail line near Dallas. The line would be located approximately eight miles east of the courthouse, therefore bypassing the city. Captain William Gaston, along with many of local business leaders, donated $5,000 in cash and land for a ROW through Gaston’s property to entice the railroad to come through Dallas. (McDonald 1978:19) The first train pulled into town on July 16, 1872.

The T&P announced that the railroad line would skirt Dallas, passing 50 miles to the south of the town. Once again civic leaders acted. They convinced their State Representative to attach a rider to the bill that granted ROW allotments to the railroads. The rider required the T&P to pass within one mile of Browder Springs (approximately one mile southeast of the courthouse). When the railroad realized what had occurred, they threatened to run their line south of the town. However, once again, business leaders donated land for the ROW, cash, and bonds. On February 22, 1873, the T&P arrived in Dallas. The MKT was completed in 1873 and provided a link to St. Louis via the connection with the Houston T&P line.

During 1870’s, Dallas became one of the largest inland cotton exchanges in the country. Almost half of the state’s cotton acreage was located within a 100-mile radius of the city. The cotton was warehoused, traded and shipped through Dallas. (Quimby and Singleton 2008) Dallas also became the distribution center for farm and ranch equipment.

The population of the city boomed in the decade between 1870 and 1880, increasing from 3,000 in 1872 to 7,000 in 1874 and to 10,285 by 1880. Manufacturing, banking, and finance were the major industries in Dallas well into the early 1900s. The city continued to annex more areas,
including East Dallas and Oak Cliff. By 1900, Dallas was the world’s largest inland cotton market. The first decades of the 20th century saw the development of the interurban system and additional rail lines.

By 1913, Dallas had experienced tremendous growth. The population increased from 92,105 in 1910 to 120,594 in 1913 (Babcock 1913: 18). Like many cities, growth in Dallas ceased during World War I. By the end of the war, Dallas remained the largest inland cotton market in the nation and supported a population of 158,976. During the 1920s, Dallas expanded its physical size from 23.4 square miles to 45.09 square miles (Quimby and Singleton 2008). The advent of the Great Depression once again halted the growth of the city, but the city soon received an influx of federal dollars for relief and public projects. Dallas was also chosen to host the Texas Centennial celebration, which brought additional dollars and jobs into the city.

World War II brought growth, prosperity, and new industries, especially related to aircraft manufacturing, to Dallas. The City physically grew from 45 square miles in 1945 to 198 square miles in 1955. By 1955, the population hit 795,000. In the post-war years, Dallas continued to grow. Stemmons Freeway (IH 35 North) opened in 1959 and was the first freeway completed under the 1956 Federal Highway Act. By 1960, the population was 679,684 and the city area encompassed approximately 282 square miles (Quimby and Singleton 2008). Dallas experienced a building boom in the 1970s and 1980s, which impacted downtown and north Dallas. In 1970, the population in Dallas had grown to 844,401 a figure which reflects the continued expansion and development of the City.

Addison

The town of Addison is located in northern Dallas County and southern Collin County. The area was originally established by settlers of the Peters Colony in the 1840s. The first settlers in the area were Preston and Pleasant Witt, who settled on White Rock Creek and built a gristmill in 1849. In 1888, W.W. Julian, E.R. Horten, and S.S. Noell donated land for ROW to the St. Louis, Arkansas and Texas Railway (SLA&T) in exchange for a coaling station, which was later known as the Noell Station. After the completion of the railroad in the area, several buildings from nearby Frankford were relocated to the railroad station. In 1902, Noell Junction became the site of the depot for the SLSW, which then built a spur leading south into Dallas. In 1904, the post office opened at the junction and was named after the first postmaster, Addison Robertson (Maxwell 2012b).

In 1914, Addison had a population of 75, three stores, and a bank. By 1926, the population had declined to 40. The bank eventually closed due to the market crash in 1929. Addison was incorporated in 1953 in an effort to avoid annexation by Dallas. By the mid-1950s, the town’s population had grown to 600. The Addison airport was built in 1956. In 1970, the population had grown to 595 with 80 businesses and by 1980, the town had 5,553 residents and 263 businesses. In order to promote industrial and commercial growth, the residents of the town voted to legalize alcohol in 1976, unlike the majority of communities in Dallas County. This effort attracted restaurants, hotels and several other support businesses. By 1990, the
population had grown to 8,783, increased to 14,166 in 2000, and by 2010 had decreased to 13,056 (Maxwell 2012b).

Richardson

Richardson is located in northern Dallas and southern Collin counties on US 75 and the Atchison, Topeka and Santa Fe, the Southern Pacific, and the SLSW railroads, ten miles north of downtown Dallas. The area of what is now Richardson was part of the Peters Colony land grant and was settled in the 1840s and 1850s. The numerous springs and creeks and fertile land made the area suitable for farming. Early settlers to the area established the community of Breckenridge, which thrived from the 1840s to 1873 when the H&TC bypassed it (Maxwell 2012d). Richardson was established adjacent to the tracks of the H&TC. William J. Wheeler and Bernard Reilly, local property owners, donated the land for the town site and the railroad ROW (Maxwell 2012d). Wheeler turned down the opportunity to have the community named after him. Instead, the town was named after E.H. Richardson, the railroad contractor who built the line from Dallas to Denison (City of Richardson 2012). After Richardson was established, people abandoned Breckenridge. The town was chartered in 1873 and the post office was established in 1874, along with a drug store and general store (City of Richardson 2012). The town prospered and by 1881 there were four doctors, several cotton gins, general stores, grocery stores, drugstores, and churches (Maxwell 2012d).

By the beginning of the 1900s, the community had a newspaper, the Richardson Register, and a population of 147. In 1908, The Interurban, the electric railway, began service from Dallas through Richardson north to Denison and Sherman. By 1910, 600 people in Richardson had access to telephone service and electricity. The town boasted four churches, a new eight-room brick school, a bank, several stores, and a weekly newspaper in 1914 (Maxwell 2012d). The community began an agricultural fair in 1924 that continued into the 1970s to promote interest in agriculture, farming and livestock. In 1924, the Red Brick Road (now Greenville Avenue/ SH 5) was completed, which opened up better transportation opportunities for the community. The next year, Richardson incorporated and elected its first mayor, Thomas F. McKamy, under a commission form of city government (City of Richardson 2012). The city added a volunteer department and public waterworks in 1926, awarding utility franchises to Lone Star Gas and the Texas Power and Light Company (City of Richardson 2012). The Richardson and Addison High Schools were consolidated into the Richardson High School in 1927.

By 1940, the population had grown to 740, but after World War II it almost doubled to 1,300. In 1951, Collins Radio opened a Richardson office. Other electronic and technology firms followed, including Texas Instruments in 1961 (City of Richardson 2012, Maxwell 2012d). Central Expressway (US 75) opened in 1954, instigating drastic growth for Richardson. In June of 1956, voters adopted a home-rule charter and the council/manager form of government (City of Richardson 2012). Five years later, the population had reached 16,810. The city became known as the “electronic suburb” and later, with the advent of high tech companies, “the Telecom Corridor” (Maxwell 2012d).
In 1961, the Southwest Center for Advanced Studies was created in conjunction with Texas Instruments. Eight years later, Texas Instruments executives gave the Center to the State of Texas and it became the University of Texas at Dallas. In the late 1960s and early 1970s, the city annexed a large amount of land along what is now the northern border of the city. In 1972 the population was approximately 56,000. Residential building grew quickly between 1972 and 2010: By 1990, the population was 74,840 and by 2010, it was 99,223 (City of Richardson 2012).

Bess

This small, historic community was located 14 miles northeast of Dallas on Duck Creek and is now within the city limits of Richardson. The community was established in the 1850s by Peters Colony members and named after Lemuel Bess, who had received a certificate for 320 acres, which included the settlement site. The community was on a rural mail route from Garland in the 1940s. (Maxwell 2012e)

White Rock

White Rock was a small community located near US 75 (Central Expressway) and SH 289 (Preston Road) and IH 635 on White Rock Creek. It was located approximately ten miles north of downtown Dallas. The community was established in the late 1840s and had a post office from 1848 to 1851. By 1900, the community was no longer shown on maps of the area (Nall 2012c).

Collin County

Collin County consists of an area of approximately 851 square miles in the Blackland Prairie region of Texas. The area was part of the Peters Colony and was first settled in the 1840s. Originally part of Fannin County, the area became a separate county in 1846. It was named after Collin McKinney, an early settler and signer of the Texas Declaration of Independence who moved to the area in 1840. The town of McKinney, also named for Collin McKinney, became the county seat in 1848. Another prominent early figure of the county was that of James Throckmorton, who was a Collin County political leader. He was a member of the Texas legislature and acted as Governor under the short-lived Constitution of 1866 (Minor 2012a).

Settlement of Collin County was slow before the Civil War. Most of the farms established before 1860 were small family farms that raised wheat, corn, and subsistence crops. The next phase of settlement occurred during and after the construction of the railroads through the county. The railroads meant transportation systems and markets for agricultural products. For the farmers, the railroads also brought building supplies and mechanized farm implements. The H&TC, the first railroad in the county, reached McKinney in 1872 and Melissa in 1874. With the arrival of the railroads, farmers could take full advantage of the rich soils of the Blackland Prairie, which resulted in the growth and production of cotton. In 1860, census records show that Collin County produced six bales of cotton. By 1870, the county annually produced 4,371 bales and by 1920, annual production increased to 49,311 bales of cotton (Minor 2012a).
The railroad contributed to the development and growth of several communities within the county. These communities, in turn, served as transportation centers to move agricultural products from Collin County to larger markets.

Plano

Plano is currently located approximately 15 miles north of Dallas in southwestern Collin County near US 75. The town site was developed in 1845 on the headrights of Joseph Klepper and Sanford Beck when Kentucky farmer William Forman moved to Texas. Forman purchased Beck’s survey in 1851 and built several businesses, which formed a focal point for the community. A post office was established in 1852 and the postal authorities approved the name “Plano”, Spanish for “flat.” Plano was platted and incorporated in 1873 and the first school system was organized in 1891. Early industries in Plano included plumbing and stove plants, a garment factory, and an electric-wire factory. The cattle industry became an important part of the economy when, in 1872, the H&TC rail line was extended from Dallas to Plano in 1872. New businesses opened in 1888 when the SLA&T intersected the H&TC. As a result, Plano became an outlet for the Blackland Prairie farmers. In 1908 Plano became an interurban stop on the Texas Electric Railroad (Schell and Wells 2012).

Douglass Community

The Douglass community is situated roughly between Avenue F on the west, East 14th Street on the north, the DART track on the east and the Cotton Belt Railroad tracks on the south. This area includes the Plano Old City Cemetery. A portion of the area that is now the Douglass neighborhood was originally part of the Joseph Klepper property. Klepper, an early settler in the area, deeded a portion of his property for a cemetery and a Methodist church. The church, located at 13th Street (formerly Water Street) and Avenue I (formerly Church Street), was active between 1874 and 1894. After 1894, the church relocated and its attendant families moved out of the area.

Many of the families that moved into the Douglass Community (also known as South End or Colored Town) were freed African American slaves who came to the area with their former masters after the Civil War. The neighborhood was originally made up of white families, living in houses scattered throughout the area and attending the local Methodist church. (Fowler 1891). African Americans that lived in the community resided along the southern end of what is now Avenue I, 13th and 14th Streets, and an area called Kendrick’s Alley, which was along 16th Street between Avenues J and K. There were also some African American families that lived around the juncture of the HT & C and Cotton Belt Railroad tracks.

White families eventually moved out of the neighborhood and more African American families bought homes in the area. Those individuals who farmed around Plano attended church at the Mt. Zion Colored Baptist Church (now Shiloh Baptist Church), which was founded in 1884 and located in the neighborhood on what is now Avenue I just north of 13th Street (Sanborn Map 1901; THC Subject Marker 1988). In 1907, the community school house was located on Avenue I.
at 13th Street. By the 1920s, the school was located further south on Avenue I, on the first floor of the lodge building. There were two barbers and a grocery store located nearby (Sanborn Map 1921).

Many of these families living in the Douglass community began small businesses that served the area, including cafes and stores. Some owned businesses that served the whole community, such as movers and haulers and the town’s only cobbler. There was a slaughterhouse, four cotton gins, an oil mill, a flour mill, a corn sheller, and an ice plant located in Plano. Over the years, G.W. Owens Lumber Company, Weld and Neville’s Cotton Gin, the Plano Milling Company, J.T. Elliot Lumber Company, and the Plano Gin Company have operated on the land between Avenue I and the railroad (Sanborn Maps, 1901, 1907, 1921, 1949). All of these enterprises provided employment opportunities to the African Americans that lived in the Douglass community (Friends of Plano Public Library 1981).

The neighborhood continued to grow and a new school facility was built. The Sanborn Fire Insurance Maps show significant residential development in the neighborhood between 1920 and 1949; further development occurred well into the 1960s (Sanborn Maps, 1949, 1961). This growth included several churches and a new brick school building that replaced a previous frame structure. Integration brought changes to the neighborhood but to this day it still retains a strong identity as the Douglass Community.

Renner

Renner was established as one of the stops on the SLSW (the Cotton Belt) in 1888. It was named after John Renner, an engineer in charge of developing town sites along the railroad line. This same year, a post office was established for the 50 residents of the community. By the early 1900s, the community had become a commercial center for the area farmers. The population reached 300 in 1915.

The Great Depression impacted the local farmers and, as a result, the local economy. This area was known for cotton growing, but the Great Depression and the mechanization of farm equipment contributed to the loss of employment, a decrease in cotton production and, therefore, a drop in population. By 1947, the population of Renner had decreased to 100 individuals.

In the years following World War II, the Texas Research Foundation, a non-profit agricultural organization, chose Renner as the location for their research laboratories. The population in the community began to increase and by 1969 it had grown to 394 people. By 1983, the community had been annexed by the City of Dallas. (Minor 2012b)

Lebanon

Lebanon was named for the town of Lebanon, Tennessee. Several of the settlers had moved from Lebanon, Tennessee to this portion of Collin County around 1845. Previously, this area was known as Shahan’s Prairie, named after a local rancher who settled there in the 1840s. Lebanon
was a fairly successful farming community. The post office opened in 1860 and by the 1890s there were three churches, 20 business and 450 citizens.

However, in 1902 the St. Louis, San Francisco and Texas Railway had been built, bypassing Lebanon. By 1905, the post office had closed. The population decreased over the years to approximately 50 people by the 1940s. (Minor, 2012c)

Bethany
Bethany was settled in 1876 and had been named for an early settler. The town was originally located in southwestern Collin County. According to records from 1990, one of Bethany’s original cemeteries remained in the area. The site of the town was incorporated into the city of Plano (Hart 2012).

Shepton
Shepton was a small farming community located in Collin County near Plano. J.W. Shepard opened a general store in the area in 1890, which became a focal point for the community. A post office operated in Shepton from 1894 to 1903. The population in the community never exceeded 50 people and, eventually, most moved to nearby Plano. By the 1980s, Shepton was located within the Plano city limits. (Nall 2012d)

Frankford
Settlement in the area of Frankford began around a campsite on the Shawnee Trail near Hall’s Branch. This campsite and its nearby spring were later used by trail drivers and travelers during the 1850s and 1860s. A small community developed nearby at the crossing of the Addison and Weber roads (now the Dallas North Tollway and Hilton Head Road). A post office opened in May of 1880, using the town name of Frankfort. Ten years later, the town had a population of 83, a gristmill, a corn mill, a cotton gin, a blacksmith shop, two general stores, and three churches.

The town was bypassed by the SLSW in the late 1880s, causing many Frankford residents to move to Addison, Plano, and other nearby communities. The post office closed in 1904 and the lodge hall, which had served as a nondenominational church, closed in 1907. The lodge hall was subsequently moved to Addison. Another church, built in the 1890s, continued to serve a predominantly Methodist congregation until 1924. By the mid-1930s the town was no longer shown on county highway maps. The city of Dallas annexed the area in 1975. (Wells 2012).

Wagon Roads
Before the railroads spread to the west, stage coach lines served as the main means of transportation. Stage coaches carried both mail and people, connecting the east coast to the west coast. Stage lines were also used as freight lines. Teams of oxen pulled wagons over the stagecoach lines to deliver goods to towns and settlements across the state (Potts 1909: 16). Counties opened roads as the population in their areas increased. Private stage lines were established between principal towns. Owners of the stagecoach lines laid out the routes and
roads but the counties maintained them. The stage line routes eventually became the railroad routes. Railroad companies used the stagecoach companies’ business models for the railroads (Potts 1909:14).

Horse-drawn public transportation connecting Houston and Harrisburg started in Texas in 1837, one year after the Battle of San Jacinto. The first Congress of the Republic of Texas created a postal system in 1839 and established postal routes, which not only carried the mail, but also included passengers and freight. Routes for Texas were established that carried mail and passengers northward to the area of Dallas and Fort Worth from Houston and the ports of Galveston and Indianola. Stagecoach routes within Texas had a series of established stops, most of which were rural inns or log cabins, located approximately 15 to 30 miles apart where drivers could obtain a fresh team of horses and passengers could purchase meals.

By 1848, the Gold Rush of California encouraged a boom in travel and aided in the development of stagecoach lines within Texas. Early stagecoach routes were established by Henry Skillman, who contracted with the government to provide service from San Antonio to El Paso in 1851. The first stagecoach line licensed to carry United States mail entered Fort Worth on July 18, 1856 (King 1949:31-32). By 1857, U.S. Postmaster General Aaron Brown contracted with John Butterfield to provide twice-weekly mail service in each direction heading eastward and westward beginning in St. Louis, Missouri. Butterfield’s Overland Mail Co. built stops every 15 to 20 miles and guaranteed arrival in San Francisco in 25 days, establishing regular stagecoach service that connected Fort Belknap to Dallas and ran through Fort Worth, carrying United States Mail (King 1949:31-32).

In 1858, a stage coach line (the Fort Worth-Jacksboro Stage Line) ran from Fort Worth to Jaksboro where it joined with the Butterfield Overland line that connected the east and west coasts (King 1949:31-32). Shortly before the beginning of the Civil War, Texas had 31 stage lines in operation. The Butterfield Overland line discontinued operations in Texas on March 2, 1861, less than six weeks before the outbreak of the Civil War. At that time, the U.S. Congress moved all mail stagecoach lines further north to avoid interruption during the war (King 1949:31-32).

Preston Road

Preston Road was originally part of the Shawnee Trail used by Native Americans that led from southwest Texas to what is now St. Louis. The trail connected to the Santa Fe Trail, following a natural ridge that avoided rivers and creeks until it crossed the Red River at a low water, rocky crossing. In 1840, the Central National Road was authorized by the Eighth Congress of the Republic of Texas. The road was laid out by Colonel W. G. Cook and the First Texas Infantry Regiment as a military road that stretched from Austin, through what would become Dallas, north to the Coffee Trading Post. The trading post was located adjacent to the fort established by Captain William Preston near the Red River for the purpose of protecting travelers and settlers from Indian attacks (Cowling 1936:13).
The full extent of the Central National Road was 130 miles. The portion of it that became commonly known as “Preston Road”, after Captain William Preston, began on the banks of the Trinity River near the Dallas County Courthouse (Old Red) and ran approximately 70 miles north to the Red River (Cowling 1936: 13). Prior to the 1870s, Preston Road was the most important freight and immigration route in North Texas (Dunn 2000:15). In the 1850s, it served as an important route for cattle drives and remained the principal route north until the Civil War. In 1905, it was designated as a north cardinal road and was targeted for improvements by Dallas County and by 1911; it was a paved road leading north from Dallas (Dunn 2000:14-15). It is now designated as SH 289.

Railroad Development in Texas

After Texas achieved independence at the 1836 Battle of San Jacinto, there were only 1,273 miles of railroads within the United States; none were west of the Mississippi and none were in the southern United States. Roads and canals were thought as being more reliable than the steam locomotives. Within six months after the Battle of San Jacinto, the First Congress of Texas met and decided that an examination should be made regarding transportation conditions within the state of Texas. It granted a charter to the Texas Railroad Navigation and Banking Company for a railroad, as well as for the improvement of the waterways, rivers, bays, and canals in order to connect the railroads to these already established modes of transportation. This charter became the first granted for a railroad west of the Mississippi and was unanimously approved by Senate vote in 1836. However, the charter was viewed as a betrayal to the people, jeopardizing their rights, property and liberty, and hence was rescinded (Reed 1981b:1-10). Additional chartered railroad attempts failed throughout the early years of the Republic of Texas, mostly due to a continued threat of Mexican invasion. However, multiple efforts and ideas planted seeds for future development (Reed 1981b: 32-33).

The first railroad in Texas was chartered in 1847. Beginning on Buffalo Bayou between Houston and Lynchburg, it extended to a point on the Brazos between Richmond and Washington. The total length of rail line constructed by 1860 totaled 80 miles and spanned the distance between Harrisburg and Alleyton. At this time, rail line construction ceased and did not resume until after the Civil War (Reed 1981b:59-61). By 1860, the future of railroads in Texas was very promising and plans were made to build northward towards Houston, Austin, and the eastern boundary of Texas along the Red River (Reed 1981b:63-65).

Three railroads had been completed by the beginning of the Civil War: the Texas and New Orleans, the Eastern Texas and the Washington County railroads (Werner 2012). Other railroad companies had started or were about to begin construction when these efforts were disrupted by the outbreak of the Civil War. They did not resume construction until after the war. The existing railroads suffered from lack of maintenance as well as from having materials pilfered for other uses. It was not until the 1870s that railroad construction resumed in earnest. The H&TC continued building north through Corsicana (1871) and Dallas (1873). Coming from the north into Texas was the MKT, which reached Denison in 1872. The following year, the H&TC also
reached Denison, giving the state a link to the nationwide railroad system (Werner 2012). The T&P acquired the Southern Pacific and the Memphis, El Paso and Pacific lines in the 1870s and completed a line from Texarkana through Dallas to Fort Worth. By the end of the 1870s, Texas had 2,440 miles of track. From the 1870s through the 1880s, more than 6,000 miles of railroad track was constructed in Texas.

At the turn of the century, there were still large areas of the state that had little or no rail service, including West Texas, the Panhandle and Southwest Texas. Nonetheless, by 1911 Texas could boast having more rail track than any other state in the Union. Between 1900 and 1932, almost 45 percent of the mileage in the state was constructed, bringing the total to 17,078 miles. Consolidation and reorganization of railroad companies continued through the 1930s. Three railroad companies, the Southern Pacific, Missouri Pacific and the Santa Fe owned more than 70 percent of the mileage in Texas (Werner 2012).

Passenger trains reached their zenith during the 1930s and 1940s. Many of the Texas lines ordered streamlined passenger equipment and new diesel engines. However, with the construction of the interstate highway system as well as the development of airlines, passenger trains were phased out. The railroads were deregulated in 1980 and lead to reconfiguration of the major freight lines. They abandoned unprofitable lines and routes and focused on consolidation and profitable routes. New companies acquired and successfully operated on secondary lines (Werner 2012).

Fort Worth & Western Railroad (FWWR), 1988
Seeking to gain trackage in Fort Worth from the Burlington Northern Railroad Company, the FWWR was chartered on May 13, 1988. Prior to its merger into the Burlington Northern, the track was owned by the St. Louis-San Francisco Railroad Company. In October of 1988, the company began operating over 6.5 miles of track controlled by the Tarantula Corporation. The Tarantula Train is an excursion passenger train that operates open coaches on the Fort Worth and Western between Eighth Avenue and the Fort Worth Stockyards (Cravens 2012).

Burlington Northern Santa Fe Railway (BNSF), 1970
The BNSF operated as a portion of the Burlington System, the name commonly used for the Chicago, Burlington, and Quincy Railroad Company. The Chicago, Burlington and Quincy, the Great Northern, the Northern Pacific, and the Pacific Coast Railways merged on March 2, 1970, to become Burlington Northern, Incorporated. The following year the name was changed to Burlington Northern Railroad. In 1995, Burlington Northern Railroad and Santa Fe Pacific Corporation merged to become one of the largest railroad systems in the United States, the BNSF (Werner 2012).

Saint Louis Southwestern Railway Company (SSW or SLSW or Cotton Belt), 1891
The SLSW line was begun as the Texas and St. Louis Railway Company (T&SL) in 1879 and was envisioned as tying the East Texas cotton fields with compresses and warehouses in St. Louis.
The rail was reorganized as the St. Louis Arkansas and Texas Railway Company of Texas (SLA&T) in 1886, and was commonly called the Cotton Belt, but operated separately in conformity with Texas law. The 99-mile line from Commerce in East Texas to Fort Worth was completed in 1888. The portion of the SLA&T line that runs in Texas was transferred by foreclosure sale in 1891 to the SLSW in Texas with general headquarters and car shops in Tyler. Historically, the Cotton Belt main line ran from St. Louis and Memphis on the east through Texarkana to Dallas/Fort Worth and Gatesville on the west, including branch lines (Lagrangerail 2012; Werner 2012).

The railway company continued to expand throughout East Texas timber lands over the next 25 years. The railway began to decline in the 1930s due to competition from other railways and the development of trucking companies, but primarily due to the depletion of Eastern Texas timber which was a major rail commodity. Controlling interest in the capital stock of the SLSW was acquired by the Southern Pacific in 1932. Abandonment of the Texas Branch lines began in 1933 and by 1965, the line between Addison and Dallas was removed from operation (Reed 1981).

Cotton Belt Route in Dallas 1903

Several railroad companies made up the Cotton Belt Route from Missouri to Texas, including Tyler Southwestern Railway Company, SLSW, and SLA&T. Tyler, Texas was the origination of the Texas Cotton Belt Route because of a rising need of transportation in east Texas. A railroad was formed from St. Louis to Texarkana and then to Tyler in 1880. The line branched off after Tyler to extend to Sherman, Hillsboro, Lufkin, Gatesville, and Fort Worth. The company began serving Dallas via trackage rights in 1896 and in 1903 built its own 12-mile line between Addison and Dallas (Lagrangerail 2012).

Dallas, Garland and Northeastern Railroad (DGNO), 1992

The Dallas, Garland and Northeastern Railroad (DGNO) is a shortline operation based out of Garland, Texas, and for many years was part of the RailAmerica family of shortlines. The railroad was started in the early 1990s and currently operates over 300 miles of trackage through lease and outright ownership. Along with property it directly owns, DGNO also leases lines from DART and Union Pacific (America Rails 2012).

Much of the trackage the DGNO currently operates was owned by the MKT system, commonly known as the Katy. This line had a history dating back to the Union Pacific Railway of 1865. Over the succeeding years, the Katy railroad grew and acquired smaller railroads eventually developing a system that extended from Kansas City and St. Louis southward to Dallas, Fort Worth, San Antonio and Houston/Galveston. In 1988, Union Pacific acquired the Katy and soon thereafter began abandoning and selling off redundant sections.

In 1992, the sale of trackage occurred when the DGNO was created to operate the former MKT line between Garland, Greenville, and Trenton. The DGNO then acquired another section of track between McKinney and Sherman. Soon thereafter, the DGNO was granted exclusive rights to operate freight service over the DART lines between Dallas, Plano, and Lake Dallas. At the end
of 1990, all Class I carriers in Dallas, TX sold necessary trackage to Dallas Area Rapid Transit Property Acquisition Corporation (DARTPAC). DARTPAC appointed the DGNO as the operator of the rail lines. The DGNO is leasing from Union Pacific Railroad the line between Greenville and Garland and has purchased the former MKT line (abandoned in 1987) from Greenville to Trenton. The DGNO began operating the group of lines through Plano and Carrollton in January 1999. In 2000, DGNO was purchased by RailAmerica, Inc. in order to expand its rail lines of shortline rail. The Dallas area shortline transported commodities ranging from lumber and paper to food products, auto parts, military contracts, plastics, and chemicals. In 1990, DART purchased trackage in Dallas from several of the major rail lines. DART appointed DGNO as the operator of these rail lines. DGNO began operating lines through Plano and Carrollton in 1999.

Highway Transportation

The development of the highway system in Texas coincided with the burgeoning purchase and use of automobiles in the early 1900s. Road improvements were necessary for drivers to be able to traverse even the shortest distances let alone a trip across the state. In 1903, like many other states, Texas saw the formation of “good road” associations to promote improvements. The Federal; Highway Act of 1916 provided for the establishment of state highway departments. In that year, Texas had 194,720 cars registered in the state. In 1917, the state legislature established the State Highway Department (now the Texas Department of Transportation [TxDOT]). The primary responsibility of the department was to give financial aid to the counties for highway construction and maintenance.

In the early 1920s, there were several changes that furthered the development of highways in Texas. The Federal Road Act of 1921 provided matching funds for states to build roads. Texas imposed a gasoline tax in 1923 to fund highway construction, and the Texas Highway Department assumed the responsibility for constructing and maintaining the state highways. The state also adopted a pay-as-you-go system to construct the roads and developed a road marking and numbering system. By 1929, Texas had 18,728 miles of highways, 9,271 of which were hard surfaced. During the Great Depression, the state sought funds for highway construction as a way of providing employment to those who were without work. By 1939, there were over 1.5 million registered cars in Texas and more than 21,000 miles of roadways (Kite 2012).

Tremendous growth in the development of highways across the United States occurred in the post-war years. In 1945, the Texas state highway commission authorized the construction of 7,500 miles of rural roads to be financed by federal and state funds. The Colson-Briscoe Act of 1949 appropriated $15 million a year to from the Omnibus Tax Clearance Fund to the state highway department. This money was earmarked for the construction of rural roads that did not have sufficient traffic to warrant their construction or maintenance. In 1962, the amount was increased to $23 million a year for new farm to market roads. By 1990, there were over 41,750 miles of secondary roads in Texas, the most in the world (Kite 2012).
In 1956, the U.S. Congress established the National System of Interstate and Defense Highways, which had the goal of linking nearly every major population center in the nation. The system was to consist of 42,000 miles of highways across the country. The law established a trust fund under which the states would pay ten percent of the cost of the system and the federal government would pay 90 percent. As a result, by the 1990s Texas had completed over 3,000 miles of interstate highway mileage (Kite 2012).

Leslie A. Stemmons Freeway (IH 35E)

The Leslie A. Stemmons Freeway (Stemmons) was designed as the Dallas section of IH 35, an interstate highway extending from Mexico to Canada. It was envisioned in 1952 when the Dallas County Commissioners Court initiated efforts to build a freeway along the US 77 corridor. The northern portion of Stemmons Freeway, which runs through Denton County, was completed in 1953; the Lewisville to Lake Dallas portion was completed in 1955. In 1954, plans were finalized for IH 35, including an alignment just west of downtown Dallas next to the Trinity River levee, where there was a large swath of undeveloped land. Because construction occurred before the 1956 Federal Aid Act, local governments were still responsible for acquiring ROW with their own resources. It was up to local officials to convince property owners in the adjacent areas to donate the needed ROW. The property owners included John Stemmons (Leslie Stemmons’ son), David Bruton of the Inwood Industrial District, and W.C. Windsor Jr. of the Brookhollow Industrial District. The last section to be acquired, from Oak Lawn Avenue to Commerce Street was purchased by the City of Dallas with public funds. Stemmons Freeway was a truly modern highway with ten main lanes, frontage roads and ample entrance/exit ramps (Slotbloom, 2002)

The first section of Stemmons Freeway was opened on August 3, 1959 in Dallas County (The Dallas Morning News 1959). The Dallas segment cost $35 million and was part of a 13-year program to build $40 billion worth of new highways in the United States (TxDOT 2013). The southern half of the freeway was the Dallas-Fort Worth Metroplex’s (DFW’s) first, modern, large-sized freeway when it opened in 1959. The freeway served as a catalyst for business and industrial development for Dallas. It continues to be the longest, widest freeway in the DFW area.

Dallas North Tollway

The North Texas Tollway Authority’s (NTTA’s) origins can be traced back to 1953 with the creation of the Texas Turnpike Authority (TTA), the state agency responsible with the building and operations of the Dallas Fort Worth Turnpike, which became known as IH 30 when TxDOT assumed responsibility in 1977. The TTA began its second project, the Dallas North Tollway in 1966 (NTTA 2012). The Dallas North Tollway is a 32-mile controlled-access toll road operated by the NTTA, which runs from the south at IH 35E in Dallas northward to US 380, near Frisco in Collin County. The original segment of the tollway ran from IH 35E to IH 635 along an old SLSW corridor.
The Dallas North Tollway was approved by the TTA for construction on August 7, 1964. The first section from IH 35E to Mockingbird Lane was opened on February 11, 1968. With the growth of north Dallas neighborhoods, the tollway was extended to IH 635 on July 1, 1968. The tollway north of IH 635 was not started until the late 1980s and was opened in 1986 (DFW Freeways 2012). All of these extensions parallel SH 289, known as Preston Road (Dunn 2000:15)

North Central Highway (US 75)
US 75 was built from the 1950s through the 1960s as a main thoroughfare from Dallas to Oklahoma City. In the late 1960s, the route of US 75 was changed significantly. The highway was moved west starting at Fairview (south of McKinney) to the Texas and Oklahoma state line. This moved it to the outskirts of McKinney, Melissa, and Anna, bisecting farmland along the way. The rural character that once defined US 75 is rapidly changing due to the suburban residential development that is occurring adjacent to the highway. The extant rural and agricultural structures have been rapidly losing their context with the expansion of urbanization.

Aviation
General History
Texas has been integral to the development of aviation since the early days of flight. The relatively flat terrain of much of the state and the warm climate provided a naturally agreeable environment for flight before the invention of modern avionics and aircraft development. It remains an influential and important part of the aviation industry.

In 1938, the Civil Aeronautics Authority was created and given power by the U.S. Government to regulate airline fares and determine the routes air carriers would travel. More importantly for airports, it lifted the ban on federal aid and changed the previous airmail contract system to a program of negotiated, non-competitive certificates. In 1940, the Civil Aeronautics Authority was split into two agencies, the Civil Aeronautics Administration (CAA) and the Civil Aeronautics Board (CAB). The CAA was responsible for the air traffic control, safety and airway development, while the CAB was charged with safety rulemaking, accident investigation, and economic regulation of the airlines (Bandarek 2001:99; FAA 2012).

From 1945 to 1958, the rapid growth of air commerce, air technology, and an increasing public demand for air services caused aviation to reach high levels of capacity. The Federal Airport Act of 1946, which grew out of initial airport funding efforts begun by the CAA and Congress in 1944, provided aid for municipal airports through the Federal Air for Airports Program (FAAP). The CAA was given the responsibility of administering the federal airport aid program, which was intended to promote development at U.S. civil airports. Between its inception in 1946 and 1969, when the FAAP expired, $1.2 billion had been distributed to airports. Its successor program, the Airport and Airway Development Act (ADAP) distributed $1.3 billion between 1970 and 1975, creating 85 new airports nationwide, and was involved in more than 1,000 improvement projects. Over the years between 1971 and 1998, the federal government spent
$26.1 billion for airport construction and improvements through ADAP and the funding sources provided by the Airport Improvement Act (Crouch 2003:609).

Dallas/Fort Worth International Airport (DFW Airport)

The proposed project rail line is immediately north of the DFW Airport. The airport is located equidistant between downtown Dallas and downtown Fort Worth, within Dallas and Tarrant counties. The development of the DFW Airport is rooted in the events of 1940, when the CAA approached the City of Arlington to develop an airport midway between Dallas and Fort Worth. American Airlines and Braniff Airways purchased and donated 1,000 acres of land for the new Midway Airport. Construction began in 1942 and the field was operated as a military training field during World War II. The first airport plan was developed in 1946 after Midway was returned to civilian use and in 1947, the field was renamed the Greater Fort Worth International Airport. In 1950, the field was renamed Amon G. Carter Field. This greatly expanded field opened in 1953. In 1960, the field was renamed yet again and became the Greater Southwest International Airport (Leatherwood 2012).

Throughout its history, the Greater Southwest International Airport competed fiercely with Love Field in Dallas, which had started as a military airfield in 1917. From 1950 to 1965, passenger service to Love Field increased, resulting in the airport outgrowing its available land, while passenger service to the Greater Southwest International Airport declined. In 1964, Dallas and Fort Worth were ordered by the CAB to devise a regional airport plan to reduce competition and duplication of the cost of operating two airfields. After much debate between the cities of Dallas and Fort Worth as to the proper organization and siting of the airport, a board was appointed in 1965. DFW Airport would be jointly owned by the cities of Dallas and Fort Worth and operated by the DFW Airport Board.

In 1969 ground was broken for the new Dallas-Fort Worth Regional Airport, which included the site of Greater Southwest International Airport (south of the project area). The name was changed to its present name, the Dallas-Fort Worth International Airport, in 1973. When the airport opened, 12 airlines operated out of the facilities, which included four 790,000 square-foot horseshoe-shaped terminals along the central International Parkway with room for nine more, all connected with the world’s first automated transit system known as Airtrans. Beginning immediately after its opening, DFW Airport began expanding and has continued to do so. The DFW Airport covers more than 29.8 square miles and is bound by the cities of Grapevine, Irving, and Euless. It currently ranks third in terms of operations and seventh in terms of passengers world-wide (Dallas-Fort Worth International Airport 2012; Leatherwood 2012).

Addison Airport

Addison Airport is located between Carrollton and Richardson on Belt Line Road in the town of Addison in Dallas County. It is eight miles north of Love Field and 13 miles north of downtown Dallas. Addison airport was conceptualized in 1954 by a small group of aviation enthusiasts, and
was eventually developed under the supervision of Henry Stuart. Final construction was completed in 1957. The airport was privately owned by a group of investors until 1986 when the investment company sold the airport to the town of Addison.

When constructed, the airport was considered the world’s first completely executive air base with facilities available to service all types of aircraft. Currently, it is the third largest general aviation airport in the country. The airport consists of 368 square acres and contains one concrete runway which is 7,200 feet in length. One of the principal features of the new airport is the Terminal Visual Omni Range (TVOR) which, along with night lighting, permits 24-hour operation throughout the entire year. The airport serves private and corporate jets, jet fleets, military, single-engine, and multi-engine planes (Dallas Magazine 1957:57).

In addition to serving aviation flight needs, the Addison Airport is the home of the Cavanaugh Flight Museum. The museum is located on the grounds of the airport and collects materials related to the history of aviation. In conjunction with the airport, the museum sponsors several airshows throughout the year using the vintage war planes and helicopters. The museum is an active participant in the restoration, maintenance, operations and display of historically-significant, vintage (Addison Airport 2012; Air Navigation 2012, Cavanaugh Flight Museum 2012).

6.0 RESULTS OF THE EXISTING CONDITIONS STUDY

Archaeological Resources

An archaeological study area was established by creating a 1-km (3,621-ft) buffer around the construction footprint of the proposed rail corridor. An examination of the TASA database was undertaken to locate known archaeological sites, identify previous archaeological investigations, and develop a cultural context for archaeological resources in anticipation of a formal pedestrian survey within a defined project APE. The search yielded the presence of 28 previously recorded archaeological sites (Table 2; Appendix A) and four cemeteries (Table 3; Appendix A). In addition, 31 archaeological investigations have been conducted previously within the proposed archaeological study area. These include 11 area surveys, 19 linear surveys, and one site testing (Table 4; Appendix A). No NRHP-listed or NRHP-eligible archaeological resources are present within the study area. Fifteen archaeological resources have been determined ineligible for listing in the NRHP. Ten archaeological resources have an undetermined NRHP-eligibility status while the remaining three archaeological resources have an unknown NRHP-eligibility status. Overall, the results of the TASA database search indicate that while no known archaeological resources are present within the construction footprint of the proposed rail corridor, numerous previously recorded archaeological resources are present within the expanded study area. Prehistoric sites have typically been found in buried contexts, while historic sites have been recorded as surface manifestations. Given the distribution and context of previously recorded archaeological sites, our present understanding of the
occupational history of the region, and the occurrence of soils suitable for the preservation of archaeological deposits, the proposed Cotton Belt rail line corridor has the potential to contain previously unrecorded archaeological resources.

Table 6-1: Previously Recorded Archaeological Sites within 1-km of the Project Area

<table>
<thead>
<tr>
<th>Trinomial</th>
<th>Recorder/Date</th>
<th>Site Type</th>
<th>Distance to Project Area</th>
<th>NRHP Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>41TR176</td>
<td>Geo-Marine / 2001</td>
<td>Historic farmstead</td>
<td>230 meters</td>
<td>Ineligible</td>
<td>None</td>
</tr>
<tr>
<td>41TR177</td>
<td>Geo-Marine / 2001</td>
<td>Historic farmstead</td>
<td>245 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>41TR178</td>
<td>Geo-Marine / 2001</td>
<td>Historic farmstead</td>
<td>200 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>41TR179</td>
<td>Geo-Marine / 2001</td>
<td>Historic homestead</td>
<td>175 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>41TR180</td>
<td>Geo-Marine / 2001</td>
<td>Historic homestead</td>
<td>160 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>41TR181</td>
<td>Geo-Marine / 2001</td>
<td>Historic homestead</td>
<td>305 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>41TR214</td>
<td>AR Consultants / 2007</td>
<td>Historic residence</td>
<td>620 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>41DL34</td>
<td>Unknown / Unknown</td>
<td>Unknown</td>
<td>425 meters</td>
<td>No Data / Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>41DL251</td>
<td>Prikryl / 1983</td>
<td>Late Archaic lithic scatter; 5 points recovered</td>
<td>710 meters</td>
<td>Undetermined but potentially eligible</td>
<td>Revisited in 1985; much of site destroyed by construction of MacArthur Blvd.</td>
</tr>
<tr>
<td>41DL309</td>
<td>Lorrain / 1990</td>
<td>Lithic scatter</td>
<td>485 meters</td>
<td>Undetermined</td>
<td>None</td>
</tr>
<tr>
<td>41DL312</td>
<td>Lorrain / 1990</td>
<td>Early 1900’s drugstore location</td>
<td>530 meters</td>
<td>Undetermined</td>
<td>None</td>
</tr>
<tr>
<td>41DL329</td>
<td>Lorrain / 1992</td>
<td>Possible prehistoric campsite</td>
<td>340 meters</td>
<td>Undetermined</td>
<td>City park developed by WPA; potential SAL in 1992</td>
</tr>
<tr>
<td>41DL330</td>
<td>Lorrain / 1992</td>
<td>Late Archaic lithic scatter; possible campsite</td>
<td>660 meters</td>
<td>Undetermined</td>
<td>Residential development</td>
</tr>
<tr>
<td>41DL392</td>
<td>Geo-Marine / 2001</td>
<td>Historic farmstead</td>
<td>380 meters</td>
<td>Ineligible</td>
<td>None</td>
</tr>
<tr>
<td>41DL395</td>
<td>Geo-Marine / 2001</td>
<td>Historic farmstead</td>
<td>740 meters</td>
<td>Ineligible</td>
<td>None</td>
</tr>
<tr>
<td>41DL399</td>
<td>Geo-Marine / 2001</td>
<td>Historic farmstead</td>
<td>243 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>Trinomial</td>
<td>Recorder/Date</td>
<td>Site Type</td>
<td>Distance to Project Area</td>
<td>NRHP Status</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>41DL400</td>
<td>Geo-Marine / 2001</td>
<td>Historic homestead</td>
<td>570 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>41DL401</td>
<td>Geo-Marine / 2001</td>
<td>Historic homestead</td>
<td>640 meters</td>
<td>Ineligible</td>
<td>None</td>
</tr>
<tr>
<td>41DL402</td>
<td>Geo-Marine / 2001</td>
<td>Historic church; Cottonwood Church</td>
<td>495 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>41DL404</td>
<td>Geo-Marine / 2001</td>
<td>Historic residence</td>
<td>710 meters</td>
<td>Undetermined</td>
<td>No further work</td>
</tr>
<tr>
<td>41DL424</td>
<td>Lorrain / 2002</td>
<td>Historic bridge; Ledbetter Bridge</td>
<td>290 meters</td>
<td>Undetermined</td>
<td>None</td>
</tr>
<tr>
<td>41DL43</td>
<td>Unknown</td>
<td>Unknown</td>
<td>110 meters</td>
<td>No Data / Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>41DL44</td>
<td>Unknown</td>
<td>Unknown</td>
<td>675 meters</td>
<td>No Data / Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>41DL447</td>
<td>Lorrain / 2006</td>
<td>Historic farmstead; A. W. Perry Homestead</td>
<td>250 meters</td>
<td>Undetermined</td>
<td>None</td>
</tr>
<tr>
<td>41DL459</td>
<td>AR Consultants / 2007</td>
<td>Historic storm cellar</td>
<td>830 meters</td>
<td>Ineligible</td>
<td>No further work</td>
</tr>
<tr>
<td>41DL510</td>
<td>Integrated Environmental Services/2013</td>
<td>Historic farmstead</td>
<td>198 meters</td>
<td>Ineligible</td>
<td>None</td>
</tr>
<tr>
<td>41COL47</td>
<td>Whitsett / 1975</td>
<td>Lithic scatter</td>
<td>645 meters</td>
<td>Undetermined</td>
<td>None</td>
</tr>
<tr>
<td>41COL177</td>
<td>Geo-Marine / 2002</td>
<td>Historic sharecropper’s home; Thornton House</td>
<td>385 meters</td>
<td>Undetermined but potentially eligible</td>
<td>Plano African American Museum</td>
</tr>
</tbody>
</table>

Source: Texas Archeological Sites Atlas, 2013
Table 6-2: Cemeteries within 1-km of the Project Area

<table>
<thead>
<tr>
<th>Cemetery Name</th>
<th>Cemetery Number</th>
<th>Distance to Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilltop Memorial Park Cemetery</td>
<td>DL-C019</td>
<td>220 meters</td>
</tr>
<tr>
<td>Perry Cemetery</td>
<td>DL-C043</td>
<td>130 meters</td>
</tr>
<tr>
<td>Old City Cemetery (Old Plano Cemetery; Pioneer Cemetery; McElvain Cemetery;</td>
<td>COL-C006</td>
<td>rail line runs adjacent</td>
</tr>
<tr>
<td>Douglass Community Cemetery)</td>
<td></td>
<td>to southern edge</td>
</tr>
<tr>
<td>Plano Mutual Cemetery</td>
<td>COL-C040</td>
<td>930 meters</td>
</tr>
</tbody>
</table>

Source: Texas Archeological Sites Atlas, 2013

Table 6-3: Archaeological Surveys within 1-km of the Project Area

<table>
<thead>
<tr>
<th>Investigation Type</th>
<th>Investigating Firm / Date</th>
<th>Texas Antiquities Permit Number</th>
<th>Government Agency</th>
<th>Distance to Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Survey</td>
<td>unknown / 1994</td>
<td>unknown</td>
<td>TTA</td>
<td>crosses project area</td>
</tr>
<tr>
<td>Area Survey</td>
<td>unknown / 1998</td>
<td>unknown</td>
<td>TTA</td>
<td>725 meters</td>
</tr>
<tr>
<td>Area Survey</td>
<td>unknown / 1999</td>
<td>unknown</td>
<td>COE FWD</td>
<td>720 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1974</td>
<td>unknown</td>
<td>EPA</td>
<td>105 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1992</td>
<td>unknown</td>
<td>FHWA</td>
<td>crosses project area</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>AR Consultants / 1995</td>
<td>1509</td>
<td>City of Carrollton</td>
<td>crosses project area</td>
</tr>
<tr>
<td>Area Survey</td>
<td>Integrated Environmental Solutions / 2013</td>
<td>6412</td>
<td>FAA</td>
<td>197 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1978</td>
<td>unknown</td>
<td>HCRS</td>
<td>230 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1984</td>
<td>unknown</td>
<td>HCRS</td>
<td>220 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1981</td>
<td>unknown</td>
<td>TDHPT</td>
<td>645 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1984</td>
<td>unknown</td>
<td>TDHPT</td>
<td>700 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1984</td>
<td>unknown</td>
<td>TDHPT</td>
<td>745 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1988</td>
<td>unknown</td>
<td>FGWA</td>
<td>720 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1994</td>
<td>unknown</td>
<td>unknown</td>
<td>670 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1991</td>
<td>unknown</td>
<td>FHWA</td>
<td>355 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1984</td>
<td>unknown</td>
<td>TxDOT</td>
<td>845 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1981</td>
<td>unknown</td>
<td>TxDOT</td>
<td>crosses project area</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1981</td>
<td>unknown</td>
<td>TxDOT</td>
<td>crosses project area</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1982</td>
<td>unknown</td>
<td>FHWA</td>
<td>270 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1985</td>
<td>unknown</td>
<td>FHWA</td>
<td>450 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>unknown / 1982</td>
<td>unknown</td>
<td>TxDOT</td>
<td>crosses project area</td>
</tr>
<tr>
<td>Area Survey</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>140 meters</td>
</tr>
<tr>
<td>Site Testing</td>
<td>Dallas City Archaeological Society / 1992</td>
<td>unknown</td>
<td>City of Dallas</td>
<td>250 meters</td>
</tr>
<tr>
<td>Linear Survey</td>
<td>Geo-Marine / 1996</td>
<td>1696</td>
<td>DART</td>
<td>crosses project area</td>
</tr>
<tr>
<td>Area Survey</td>
<td>Geo-Marine / 2005</td>
<td>unknown</td>
<td>TxDOT</td>
<td>245 meters</td>
</tr>
</tbody>
</table>
Architectural Resources

An APE for historic-age resources for the Cotton Belt Project was established in coordination with the THC. The APE was defined as 175 ft (53 m) from the centerline for existing ROW. For areas requiring new ROW, the APE was adjusted to 250 ft (76 m) from the centerline. Archival research was then conducted to identify resources requiring initial or further investigation as well as to locate previously recorded and evaluated historic resources, districts, markers, cemeteries, bridges and culverts. Listings of Registered Texas Historic Landmarks (RTHLs), and State Archaeological Landmarks (SALs), in addition to reports, records, maps and aerial photographs, were examined and were made available through the following institutions:

- The Texas Historic Sites Atlas (THSA)
- Reports housed at various agencies including URS
- Online maps of the Texas State Library & Archives Commission
- The Handbook of Texas Online
- The online records of the Tarrant, Dallas and Collin appraisal districts

Following the initial coordination, a search of the THSA resulted in the identification of 28 known historic-age resources potentially within or near the project APE. Upon further investigation and refinement of the design drawings, it was discovered that the Addison State Bank (a designated RTHL) and the Plano-Old City Cemetery were located in the project APE. All of the identified resources are enumerated in Table 5 with their respective locations in regard to the APE. Various institutions, libraries, and archives, and federal, state, and local agencies were consulted to identify any additional resources within the project APE.
<table>
<thead>
<tr>
<th>COUNTY</th>
<th>ADDRESS</th>
<th>NAME</th>
<th>DESIGNATION</th>
<th>Proximity to ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dallas</td>
<td>752 South Coppell Road, Coppell</td>
<td>Residence at 752 South Coppell Road</td>
<td>no designation</td>
<td>457'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1038 South Elm Street, Carrollton</td>
<td>Gravley Hardware</td>
<td>no designation</td>
<td>430'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1101 West Belt Line Road, Coppell</td>
<td>Boatwright House</td>
<td>no designation</td>
<td>415'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1000 Denton Drive, Carrollton</td>
<td>Dr. Blackburn House</td>
<td>no designation</td>
<td>538'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1011 Jackson Street, Carrollton</td>
<td>Residence at 1011 Jackson Street</td>
<td>no designation</td>
<td>747'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1201 Carroll Avenue, Carrollton</td>
<td>Residence at 1201 Carroll Avenue</td>
<td>no designation</td>
<td>1140'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1203 Carroll Avenue, Carrollton</td>
<td>Residence at 1203 Carroll Avenue</td>
<td>no designation</td>
<td>1140'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1319 Walnut Street, Carrollton</td>
<td>Residence at 1319 Walnut Street</td>
<td>no designation</td>
<td>645'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1101 Clint Street, Carrollton</td>
<td>Residence at 1101 Clint Street</td>
<td>no designation</td>
<td>1282'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1501 Walnut Street, Carrollton</td>
<td>A.T. Stewart House</td>
<td>no designation</td>
<td>1282'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1400 Rosemon Avenue, Carrollton</td>
<td>J.C. Davis House</td>
<td>no designation</td>
<td>654'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1407 Rosemon Avenue, Carrollton</td>
<td>Residence at 1407 Rosemon Avenue</td>
<td>no designation</td>
<td>654'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1208 Clint Street, Carrollton</td>
<td>Residence at 1208 Clint Street</td>
<td>no designation</td>
<td>788'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(surveyed 1982)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1810 North Perry Road, Carrollton</td>
<td>Hilltop Memorial Park</td>
<td>Cemetery</td>
<td>400'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1805 North Perry Road, Carrollton</td>
<td>Perry Cemetery</td>
<td>Historic Texas Cemetery</td>
<td>675'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2005); Historic Texas Marker (2005)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>1509 North Perry Road, Carrollton</td>
<td>Perry Homestead</td>
<td>Historic Texas Marker</td>
<td>275'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1976)</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>4803 Broadway Street, Addison</td>
<td>Addison State Bank Building</td>
<td>RTHL (surveyed 1984)</td>
<td>200'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building at 4803 Broadway (1905)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collin</td>
<td>6800 McCallum Boulevard, Dallas</td>
<td>Residence at 6800 Block McCallum</td>
<td>no designation</td>
<td>745'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(date unknown)</td>
<td></td>
</tr>
<tr>
<td>Collin</td>
<td>17700 Frank Jackson, Dallas</td>
<td>Residence at 17700 Frank Jackson</td>
<td>no designation</td>
<td>917'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(date unknown)</td>
<td></td>
</tr>
<tr>
<td>Collin</td>
<td>17726 Frank Jackson, Dallas</td>
<td>Institutional Building at 17726 Frank Jackson (1915)</td>
<td>no designation (date unknown)</td>
<td>746'</td>
</tr>
<tr>
<td>Collin</td>
<td>7659 Newt Drive, Dallas</td>
<td>Residence at 7659 Newt Drive</td>
<td>no designation</td>
<td>687'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(date unknown)</td>
<td></td>
</tr>
<tr>
<td>Collin</td>
<td>7700 Ronnie Drive, Dallas</td>
<td>Residence at 7700 block Ronnie</td>
<td>no designation</td>
<td>328'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(date unknown)</td>
<td></td>
</tr>
<tr>
<td>COUNTY</td>
<td>ADDRESS</td>
<td>NAME</td>
<td>DESIGNATION</td>
<td>Proximity to ROW</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Collin</td>
<td>17727 Dickerson, Dallas</td>
<td>Commercial Building at 17727 Dickerson (1925)</td>
<td>no designation (date unknown)</td>
<td>832'</td>
</tr>
<tr>
<td>Collin</td>
<td>17720 Dickerson, Dallas</td>
<td>Institutional Building at 17720 Dickerson (1925)</td>
<td>no designation (date unknown)</td>
<td>325'</td>
</tr>
<tr>
<td>Collin</td>
<td>7758 Ronnie Drive, Dallas</td>
<td>Residence at 7758 Ronnie Drive (1930)</td>
<td>no designation (date unknown)</td>
<td>305'</td>
</tr>
<tr>
<td>Collin</td>
<td>7759 Ronnie Drive, Dallas</td>
<td>Residence at 7759 Ronnie Drive (1925)</td>
<td>no designation (date unknown)</td>
<td>305'</td>
</tr>
<tr>
<td>Collin</td>
<td>7767 Ronnie Drive, Dallas</td>
<td>Residence at 7767 Ronnie Drive (1910)</td>
<td>no designation (date unknown)</td>
<td>305'</td>
</tr>
<tr>
<td>Collin</td>
<td>Avenue H & I, 11th & 12th Streets, Plano</td>
<td>Plano-Old City Cemetery, (1881)</td>
<td>Historic Texas Cemetery, Texas Historical Marker (1980)</td>
<td>adjacent to track</td>
</tr>
</tbody>
</table>

Source: *Texas Historic Sites Atlas, 2012*

In addition to individual historic-age resources within the project APE, any development patterns indicating the locations of additional potentially historic districts within or abutting the project area were sought. A review of topographic and aerial maps indicated a slight potential for unrecorded historic resources in the project area.

Based on the archival research, several themes were developed that aided in the development of a historic context of the project area and in the evaluation of the historic-age resources expected to be encountered during the survey. These themes, which are discussed in the preceding section of this report, are:

- Property types common to the project area and their significance to the history of North-Central Texas;
- The development of the railroad; and
- History and development of communities and neighborhoods near the project APE.

The project area encompasses urban and suburban settings. The anticipated property types for historic-age resources included domestic dwellings, commercial, industrial, and railroad-related resources.

Overview of Historic Resources Reconnaissance Survey

An existing conditions study is typically undertaken for planning purposes and/or as a preliminary investigation in advance of a more intensive cultural resources survey effort. While it is not within the scope of an existing conditions study to provide an exhaustive presentation of the results of any particular survey, it should be noted that URS has already completed a historic resources field survey of the Cotton Belt Project APE and a comprehensive report detailing the results of the survey is currently being prepared for review by DART. Since the results of this investigation are now part of the current record of cultural resources existing conditions, a brief synthesis and table summary of this survey is provided below.
The historic resources reconnaissance survey of the Cotton Belt Project APE was completed in November and December of 2012, by an architectural historian who meets the Secretary of the Interior’s professional qualification standards. The survey documented 68 historic-age architectural resources (Appendix B) including buildings and structures associated with the following functional categories: domestic, transportation, commercial, industry, religious, and funerary. Domestic resources (n=38; 56 percent) were by far the most numerous followed by transportation resources (n=18; 27 percent), commercial/industrial resources (n=9; 12 percent); funerary (n=2; 3 percent), and religious (n=1; 1 percent). A table summarizing the results of the survey is presented in Table 6.

Changes in resources usage through time are represented primarily by domestic properties now being used as commercial businesses. This survey effort provided data concerning these resources and preliminary assessments of NRHP eligibility. The resources included individual buildings and structures as well as resources that were grouped together due to their type and proximity. These resources include domestic/single-family dwellings located on cul-de-sacs constructed as part of early to mid-1960s and 1970s developments. One historic neighborhood, the Douglass Community, was investigated for the presence of a potential historic district. After further examination, however, it was found that the community contained several non-historic resources, empty lots due to the removal of historic resources, and significantly modified historic resources (modifications consist of additions and replacement materials including windows, doors, roofs, and exterior cladding). Thus, it was determined that the Douglass Community lacked sufficient integrity to convey its historic significance and was not recommended as a potential historic district.

During the survey 18 Transportation/rail-related resources were also identified, including the Carrollton Depot, 15 bridges, and two concrete culverts (Resources 27 and 67). These resources were evaluated for the NRHP as individual resources.

Of the Transportation/rail-related resources evaluated, the Carrollton Depot (Resource 21) and one bridge (Resource 45) were previously identified as eligible for the NRHP. Eleven of the bridges are wood trestles (Resources 1, 2, 12, 15, 16, 17, 18, 19, 20, 46, and 47), originally constructed in the late 1930’s. These bridges are common railroad structures and have all had significant modifications, including the replacement of structural members and track. The remaining four bridges include the White Rock Creek Bridge, a 1917 American Bridge Company Warren Pony truss bridge (Resource 45); Spanky Branch Bridge 1, a pony plate girder bridge (Resource 48); a modified wood trestle bridge (Resource 50); and Spring Creek Bridge, a deck plate girder bridge (Resource 51). Of the 18 railroad-related resources only two are recommended individually eligible for listing in the NRHP (Resources 21 and 45).
Table 6-5: Historic Resources Identified within the Cotton Belt Project APE

<table>
<thead>
<tr>
<th>Resource Number</th>
<th>Address</th>
<th>County</th>
<th>Construction Date</th>
<th>Style</th>
<th>Historic Use</th>
<th>Current Use</th>
<th>Property Type</th>
<th>Condition</th>
<th>NRHP Eligibility Recommendations</th>
<th>Preliminary Impact Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mile Marker 25.9 Cottonwood Branch, Grapevine, Texas</td>
<td>Tarrant</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>2</td>
<td>West of Hwy. 121-International Pkwy, south of Coppell Rd./Wall St., Grapevine, Texas</td>
<td>Tarrant</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>3</td>
<td>440 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1958</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Multi-family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>4</td>
<td>436 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1950</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>5</td>
<td>428 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1958</td>
<td>Minimal Traditional</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>6</td>
<td>424 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1957</td>
<td>Minimal Traditional</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>7</td>
<td>404 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1948</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Commercial</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>8a</td>
<td>400 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1960</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>8b</td>
<td>400 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1960</td>
<td>Rectangular Plan</td>
<td>N/A</td>
<td>Temporary Building</td>
<td>Domestic</td>
<td>Fair</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>9</td>
<td>312 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1955</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>10</td>
<td>308 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1948</td>
<td>Irregular Plan</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>11</td>
<td>304 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1950</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>Resource Number</td>
<td>Address</td>
<td>County</td>
<td>Construction Date</td>
<td>Style</td>
<td>Historic Use</td>
<td>Current Use</td>
<td>Property Type</td>
<td>Condition</td>
<td>NRHP Eligibility Recommendations</td>
<td>Preliminary Impact Assessment</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>12</td>
<td>51 Grapevine Creek, Coppell, Texas</td>
<td>Dallas</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>13</td>
<td>196 Southwestern Blvd., Coppell, Texas</td>
<td>Dallas</td>
<td>1966</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single Family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>14</td>
<td>800-808 Howell Dr., Coppell, Texas</td>
<td>Dallas</td>
<td>1970-1971</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single Family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>15</td>
<td>East of Denton Tap Rd., Coppell, Texas</td>
<td>Dallas</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>16</td>
<td>North of E. Belt Line Rd., Coppell, Texas</td>
<td>Dallas</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Effect</td>
</tr>
<tr>
<td>17</td>
<td>West of Fairway Dr., Coppell, Texas</td>
<td>Dallas</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>18</td>
<td>West of Bush Trnpk., Mile Marker 32.5, Carrollton, Texas</td>
<td>Dallas</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>19</td>
<td>East of Bush Trnpk., north of Belt Line Rd., Carrollton, Texas</td>
<td>Dallas</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>20</td>
<td>North of Belt Line Rd., East of Luna Rd., Carrollton, Texas</td>
<td>Dallas</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>Resource Number</td>
<td>Address</td>
<td>County</td>
<td>Construction Date</td>
<td>Style</td>
<td>Historic Use</td>
<td>Current Use</td>
<td>Property Type</td>
<td>Condition</td>
<td>NRHP Eligibility Recommendations</td>
<td>Preliminary Impact Assessment</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>21</td>
<td>1013 E. Belt Line Rd., Carrollton, Texas</td>
<td>Dallas</td>
<td>1924</td>
<td>Craftsman</td>
<td>Train Depot</td>
<td>Vacant</td>
<td>Transportation</td>
<td>Good</td>
<td>Eligible/Contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>22</td>
<td>1200 Denton Dr., Carrollton, Texas</td>
<td>Dallas</td>
<td>1954</td>
<td>Rectangular Plan</td>
<td>Specialty Store</td>
<td>Specialty Store</td>
<td>Commerce/Trade</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>23</td>
<td>1513-1605 Baxley St., Carrollton, Texas</td>
<td>Dallas</td>
<td>1952</td>
<td>Minimal Traditional</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>24</td>
<td>1500-1600 Cecil Dr., Carrollton, Texas</td>
<td>Dallas</td>
<td>1971-1972</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>25</td>
<td>1810 Perry Rd., Carrollton, Texas</td>
<td>Dallas</td>
<td>1954-2013</td>
<td>Cemetery</td>
<td>Cemetery</td>
<td>Cemetery</td>
<td>Funerary</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>26</td>
<td>1708 N. Perry Rd., Carrollton, Texas</td>
<td>Dallas</td>
<td>1967</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>27</td>
<td>Northeast corner of Perry Rd. at Cotton Belt, Carrollton, Texas</td>
<td>Dallas</td>
<td>1970</td>
<td>Concrete Culvert</td>
<td>Culvert</td>
<td>Culvert</td>
<td>Transportation</td>
<td>Fair</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>28</td>
<td>1804-1810 Edgecliff Cove, Carrollton, Texas</td>
<td>Dallas</td>
<td>1968</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>29</td>
<td>1818-1824 Briar Cove, Carrollton, Texas</td>
<td>Dallas</td>
<td>1968</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>30</td>
<td>1832-1838 Ridgemeadow Cove, Carrollton, Texas</td>
<td>Dallas</td>
<td>1968</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>31</td>
<td>1846-1850 Meadowbrook Cove, Carrollton, Texas</td>
<td>Dallas</td>
<td>1968</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>32</td>
<td>1845 N. Josey Ln., Carrollton, Texas</td>
<td>Dallas</td>
<td>1970</td>
<td>Irregular Plan</td>
<td>Multi-family</td>
<td>Multi-family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>33</td>
<td>1860-1864 Shadyview Cove, Carrollton, Texas</td>
<td>Dallas</td>
<td>1968</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>Resource Number</td>
<td>Address</td>
<td>County</td>
<td>Construction Date</td>
<td>Style</td>
<td>Historic Use</td>
<td>Current Use</td>
<td>Property Type</td>
<td>Condition</td>
<td>NRHP Eligibility Recommendations</td>
<td>Preliminary Impact Assessment</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>34</td>
<td>1874-1878 Hill Cove, Carrollton, Texas</td>
<td>Dallas</td>
<td>1970</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>35</td>
<td>1855 N. Josey Ln. Carrollton, Texas</td>
<td>Dallas</td>
<td>1963</td>
<td>Rectangular Plan</td>
<td>Church</td>
<td>Church</td>
<td>Religious</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>36</td>
<td>1855 N. Josey Ln. Carrollton, Texas</td>
<td>Dallas</td>
<td>1967</td>
<td>Rectangular Plan</td>
<td>Auto garage</td>
<td>Auto repair</td>
<td>Commerce/ Trade</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>37</td>
<td>1820 N. Josey Ln. Carrollton, Texas</td>
<td>Dallas</td>
<td>1967</td>
<td>Rectangular Plan</td>
<td>Auto garage</td>
<td>garage</td>
<td>Industry</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>38</td>
<td>2705-2706 Lakewood Ln. Carrollton, Texas</td>
<td>Dallas</td>
<td>1971</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>41</td>
<td>2727-2728 Lakeridge Ln. Carrollton, Texas</td>
<td>Dallas</td>
<td>1970</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>42</td>
<td>2808-2809 Lakeside Ln. Carrollton, Texas</td>
<td>Dallas</td>
<td>1971</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>43</td>
<td>4300 Lindberg Dr. Addison, Texas</td>
<td>Dallas</td>
<td>1967</td>
<td>Irregular Plan</td>
<td>Auto garage</td>
<td>Auto garage</td>
<td>Industry</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>44</td>
<td>4803 Broadway Addison, Texas</td>
<td>Dallas</td>
<td>1913</td>
<td>One-part Commercial</td>
<td>Bank</td>
<td>Office</td>
<td>Commerce/ Trade</td>
<td>Good</td>
<td>Eligible/Contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>Adverse Impact</td>
</tr>
<tr>
<td>45</td>
<td>West of Preston Rd., adjacent to Prestonwood Country Club Dallas, Texas</td>
<td>Dallas</td>
<td>1917</td>
<td>Warren Pony Truss Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Eligible/Contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>Adverse Impact</td>
</tr>
<tr>
<td>46</td>
<td>South of Campbell Rd., East of Keller Springs Rd. Dallas, Texas</td>
<td>Dallas</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>Resource Number</td>
<td>Address</td>
<td>County</td>
<td>Construction Date</td>
<td>Style</td>
<td>Historic Use</td>
<td>Current Use</td>
<td>Property Type</td>
<td>Condition</td>
<td>NRHP Eligibility Recommendations</td>
<td>Preliminary Impact Assessment</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------</td>
<td>-------------------</td>
<td>------------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>47</td>
<td>East of Davenport Rd. Dallas, Texas</td>
<td>Dallas</td>
<td>ca. 1937</td>
<td>Wood Trestle Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>48</td>
<td>South of Duffield Dr., east of Devenport Rd. Dallas, Texas</td>
<td>Dallas</td>
<td>ca. 1940</td>
<td>Half-Through Plate Girder Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>49</td>
<td>7671 Ronnie Ave. Dallas, Texas</td>
<td>Dallas</td>
<td>1907</td>
<td>Irregular Plan</td>
<td>Dwelling</td>
<td>Commercial</td>
<td>Commerce/Trade</td>
<td>Fair</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>50</td>
<td>Over Cotton Belt Tracks, east of Waterview Dr. Richardson, Texas</td>
<td>Dallas</td>
<td>ca. 1940</td>
<td>Concrete modified trestle</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>51</td>
<td>North of Bush Trnpk., East of Alma Rd. Plano, Texas</td>
<td>Collin</td>
<td>ca. 1940</td>
<td>Deck Plate Girder Bridge</td>
<td>Bridge</td>
<td>Bridge</td>
<td>Transportation</td>
<td>Fair</td>
<td>Not individually eligible/Non-contributing resource to Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
</tr>
<tr>
<td>52</td>
<td>1000 Avenue F Plano, Texas</td>
<td>Collin</td>
<td>1948</td>
<td>Irregular Plan</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>53</td>
<td>1001 Avenue G Plano, Texas</td>
<td>Collin</td>
<td>1918</td>
<td>Foursquare</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>54</td>
<td>1009 Avenue G Plano, Texas</td>
<td>Collin</td>
<td>1945</td>
<td>Rectangular Plan</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>55</td>
<td>1008 Avenue G Plano, Texas</td>
<td>Collin</td>
<td>1913</td>
<td>Irregular Plan</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>56</td>
<td>1010 Avenue G Plano, Texas</td>
<td>Collin</td>
<td>1928</td>
<td>Craftsman</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>57</td>
<td>1012 Avenue G Plano, Texas</td>
<td>Collin</td>
<td>1928</td>
<td>Craftsman</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>Resource Number</td>
<td>Address</td>
<td>County</td>
<td>Construction Date</td>
<td>Style</td>
<td>Historic Use</td>
<td>Current Use</td>
<td>Property Type</td>
<td>Condition</td>
<td>NRHP Eligibility Recommendations</td>
<td>Preliminary Impact Assessment</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>58</td>
<td>1029 Southwestern Ave. Plano, Texas</td>
<td>Collin</td>
<td>1923</td>
<td>Irregular Plan</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Fair</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>59</td>
<td>1033 Southwestern Ave. Plano, Texas</td>
<td>Collin</td>
<td>1923</td>
<td>Irregular Plan</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>60</td>
<td>1101 Avenue H Plano, Texas</td>
<td>Collin</td>
<td>1948</td>
<td>Ranch</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>61</td>
<td>1000 Avenue H Plano, Texas</td>
<td>Collin</td>
<td>1881- ca. 2009</td>
<td>Cemetery</td>
<td>Cemetery</td>
<td>Cemetery</td>
<td>Funerary</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>62</td>
<td>1101 Avenue I Plano, Texas</td>
<td>Collin</td>
<td>1940</td>
<td>Craftsman</td>
<td>Single Family</td>
<td>Single family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>63</td>
<td>1105 Avenue I Plano, Texas</td>
<td>Collin</td>
<td>1940</td>
<td>Minimal Traditional</td>
<td>Single Family</td>
<td>Single Family</td>
<td>Domestic</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>64</td>
<td>901 10th Street Plano, Texas</td>
<td>Collin</td>
<td>1955, 1977</td>
<td>Irregular Plan</td>
<td>Manufacturing</td>
<td>Manufacturing</td>
<td>Industry</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>65</td>
<td>1302- 13th Street Plano, Texas</td>
<td>Collin</td>
<td>ca. 1945</td>
<td>Rectangular Plan</td>
<td>Manufacturing</td>
<td>Commercial</td>
<td>Industry</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>66</td>
<td>1304 13th Street Plano, Texas</td>
<td>Collin</td>
<td>ca. 1945</td>
<td>Rectangular Plan</td>
<td>Manufacturing</td>
<td>Commercial</td>
<td>Industry</td>
<td>Good</td>
<td>Not Eligible</td>
<td>No Impact</td>
</tr>
<tr>
<td>67</td>
<td>North of Technology Drive, East of Jupiter Rd. Plano, Texas</td>
<td>Collin</td>
<td>1951</td>
<td>Concrete Double-Barrel Culvert</td>
<td>Culvert</td>
<td>Transportation</td>
<td>Good</td>
<td>Not individually eligible/Non-contributing resource to potential Historic Cotton Belt Railroad Thematic Corridor</td>
<td>No Impact</td>
<td></td>
</tr>
</tbody>
</table>
7.0 SUMMARY AND RECOMMENDATIONS

URS was contracted by DART to complete an Existing Conditions study for the proposed Cotton Belt Project in Tarrant, Dallas, and Collin Counties, Texas. The study was intended to assist in the coordination effort in anticipation of fulfilling any regulatory requirements under Section 106 of the NHPA of 1966 (16 U.S.C. 470 et seq., as amended), and the Antiquities Code of Texas. The proposed project consists of approximately 26 miles of rail corridor from DFW Airport to central Plano (Appendix A and B). For historic-age architectural resources, an APE was defined through formal coordination with the THC. For archaeological resources, a general study area was established to provide a wider context for developing an environmental and cultural overview and to gain a better understanding of archaeological site distribution, type, density, and preservation in anticipation of a formal pedestrian survey.

A review of the THSA database was undertaken to identify known architectural resources for presentation in this report and to serve as a preliminary background study prior to an actual field survey of architectural resources within the APE. The THSA database search yielded 28 known historic-age architectural resources potentially within or near the Cotton Belt Project APE (Table 5). Four resources, the Hilltop Memorial Park (Resource 25), Carrollton Depot (Resource 21), Addison State Bank (Resource 44) (RTHL), and the Plano-Old City Cemetery (Resource 61) were located within in the APE. As part of the background study, documentation (including topographic maps and aerial imagery) from various other institutions, libraries, and archives were reviewed, and several federal, state, and local agencies were consulted to identify any additional resources within the project APE. Finally, patterns of historical development were examined to identify potential multiple-property thematic groupings and historic districts that may be impacted by the proposed Cotton Belt project.

Included in this study are the results and recommendations from the historic resources reconnaissance survey of the Cotton Belt Project APE. This field survey was completed prior to the submission of this report. As such, an overview of this investigation was included as part of the existing conditions dataset. The reconnaissance survey recorded 68 historic-age architectural resources within the project APE (Table 6; Appendix B). Of these, none are currently listed in the NRHP and one (Resource 44) is listed as a RTHL. In total, three resources are recommended individually eligible for inclusion in the NRHP; Addison State Bank (Resource 44); Carrollton Depot (Resource 21); and White Rock Creek Bridge (Resource 45).

A review of the TASA database was undertaken to identify known archaeological sites, previous archaeological investigations, and to develop a cultural context for archaeological resources in the project area. The search yielded 28 previously recorded archaeological sites, four cemeteries, and 31 previous archaeological investigations (Tables 2, 3, and 4; Appendix A). Of the 28 archaeological resources, 15 are ineligible for listing in the NRHP, 10 have an undetermined NRHP-eligibility status, and data is unavailable regarding the NRHP-eligibility
status of three archaeological resources. No NRHP-listed or NRHP-eligible archaeological resources are currently present within the archaeological study area and no archaeological resources occur within the current rail corridor.

If the Cotton Belt Project advances and if it is determined that an intensive archaeological resources survey is necessary, DART will request additional coordination with the THC before beginning archaeological fieldwork. All fieldwork will be supervised by qualified cultural resource professionals who meet the Council of Texas Archeologists’ (CTA) professional requirements for archaeologists and the Secretary of the Interior’s Professional Qualifications Standards for Archeology and Historic Preservation (48 FR 44716).

The archaeological APE for this project is proposed to be the Cotton Belt Corridor ROW, any newly acquired ROW, potential staging areas for construction equipment, and station location footprints. New rail corridor, stations, tunnels, and operations and maintenance facilities, as they become known, would necessitate additional Section 106 and Texas Antiquities coordination and review with the THC.

The survey methods for archaeological resources will follow the survey standards set forth by the THC. Shovel tests will be excavated in settings that have potential for buried cultural materials, in areas with less than 30 percent ground surface visibility, or at the discretion of the lead archaeologist. All shovel tests will be excavated to the bottom of Holocene deposits, if possible. Each shovel test will be excavated in 20 cm arbitrary levels, and all soil will be screened through one-quarter-inch mesh hardware cloth. Methods will comply with applicable standards as defined or referenced in 13 TAC 26.20 and the THC. Plausible justification for any deviations from these standards would be provided. Any uniquely diagnostic artifacts that may be collected during the survey will be permanently curated at the Texas Archeological Research Laboratory (TARL) in accordance with TARL standards for collection preparation.

A report of findings will be prepared that includes a discussion of the background research, methods, results of the field investigations, and recommendations for additional work. The report shall meet reporting standards of 13 TAC 26.24 and the CTA reporting guidelines. The report will include discussion of the results of field investigations including a list of sites identified. Any newly recorded or previously recorded archaeological site will be evaluated in relation to the significance criteria established for the NRHP. The purpose of the NRHP is to list properties that are “significant in American history, architecture, archeology and culture” (NHPA Section 101 [a][1]). Typically, archaeological sites are evaluated under criterion D, though other criteria may apply as well. Per the NRHP criteria for evaluation:

The quality of significance in American history, architecture, archeology, engineering, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association and
(A) that are associated with events that have made a significant contribution to the broad patterns of our history; or
(B) that are associated with the lives of persons significant in our past; or
(C) that embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
(D) that have yielded, or may be likely to yield, information important in prehistory or history (36 CFR Part 60.4).

Additionally, all archaeological sites will be evaluated for SAL designation using the criteria for evaluating archaeological sites established by the Texas Administrative Code, Title 13, Part 2, Chapter 26, Subchapter C, RULE §26.10 whereby:

The commission shall use one or more of the following criteria when assessing the appropriateness of official landmark designation, and/or the need for further investigations under the permit process:

(1) the site has the potential to contribute to a better understanding of the prehistory and/or history of Texas by the addition of new and important information;
(2) the site's archeological deposits and the artifacts within the site are preserved and intact, thereby supporting the research potential or preservation interests of the site;
(3) the site possesses unique or rare attributes concerning Texas prehistory and/or history;
(4) the study of the site offers the opportunity to test theories and methods of preservation, thereby contributing to new scientific knowledge; and
(5) there is a high likelihood that vandalism and relic collecting has occurred or could occur, and official landmark designation is needed to ensure maximum legal protection, or alternatively, further investigations are needed to mitigate the effects of vandalism and relic collecting when the site cannot be protected.

All site forms will be submitted to TARL and trinomials will be obtained. The report will include recommendations for further work or no further work with appropriate justifications based on the requirements of 13 TAC 26.20, 13 and defined in 13 TAC 26.5. All artifacts, project notes, maps, photographs and other documentary records will be temporarily housed at a local laboratory facility. Upon completion of the project, all materials will be permanently curated at the TARL at the University of Texas, Austin.
8.0 IMPACT ASSESSMENT

The proposed Cotton Belt Project will be constructed adjacent to the existing rail line and within the current railroad ROW. Historic-age resources that are within the APE, but outside the current railroad ROW will not be impacted by the proposed actions. One resource (Resource 45) located within the ROW is recommended individually eligible for listing in the NRHP and recommended as a contributing resource to the potential Cotton Belt Historic Railroad Thematic Corridor. Review of the proposed actions has determined that there would be an adverse impact to this resource.

At present, no archaeological resources occur within the proposed Cotton Belt Corridor Regional Rail ROW. Therefore, no known archaeological resources will be impacted by the proposed actions. It should be noted, however, that an intensive archaeological survey within a defined APE for archaeological resources has not been completed. Given the distribution and context of previously recorded archaeological sites within the archaeological study area, our present understanding of the occupational history of the region, and the occurrence of soils suitable for the preservation of archaeological deposits, the proposed Cotton Belt Project ROW has the potential to contain previously unrecorded archaeological resources.
REFERENCED CITED

Addison Airport

Air Navigation

Anthony, D., and D. O. Brown (editors)

American Rails
2012 http://www.american-rails.com/

Babcock, J.R.
1913 Dallas, the City of the Hour, Southern Architect and Building News, Vol. 30, No. 5 March 1913.

Barber, Byron L.

Baugh, S.

Bell, M.

Bednarek, Janet R. Daly

Blair, W. Frank
Bruseth, James E., and William A. Martin (editors)

Bureau of Economic Geology (BEG)
1996 Physiographic Map of Texas. Bureau of Economic Geology, The University of Texas at Austin.

Cavanaugh Flight Museum

Coffee, Daniel R., Ralph H. Hill, and Dennis D. Ressel
1975 Soil Survey of Dallas County, Texas. United States Department of Agriculture, Soil Conservation Service, in cooperation with Texas Agricultural Experiment Station.

Coppell Historical Society

Cowling, Mary Jo.
1936 Geography of Denton County. Banks Upshaw and Company: Dallas, Texas.

Cravens, Chris
2012 "Fort Worth and Western Railroad," Handbook of Texas Online (http://www.tshaonline.org/handbook/online/articles/eqftb), accessed June 17, 2013. Published by the Texas State Historical Association.

Crouch, Tom D.

Creel, Darrell
Crook, Wilson W. Jr., and R. K. Harris

Dallas Magazine
1957 Opening of Addison Airport Brings First Executive Air Base to Dallas. November 1957, page 57.

Dallas Morning News

DFW Freeways

Dallas-Fort Worth International Airport

Dunn, Jeff

City of Farmers Branch

Federal Aviation Administration (FAA)

Ferring, C. Reid

Ferring, C. Reid, and Bonnie C. Yates
Fowler, Thaddeus Mortimer
1891 Map of Plano, Collin, Texas. Published T.M. Fowler and James Moyer, 1891.

Fox, D. E.
1983 Traces of Texas History: Archeological Evidence of the Past 450 Years. San Antonio: Corona.

Friends of the Plano Public Library

Hanson, Arthur, and Frankie F. Wheeler
1969 Soil Survey of Collin County, Texas. United States Department of Agriculture, Soil Conservation Service, in cooperation with Texas Agricultural Experiment Station.

Harris, R. K.

Harris, R. K., and Inus Marie Harris

Hart, Jan

Hightower, W. Kellon

Hofman, J. L.

Kartesz, John T. and John W. Thieret

Kenmotsu, N. A., and T. K. Perttula
King, Frank M.

Kite, Kirk,

Jensen, H. P.

Lagrangerail Works

Leatherwood, Art

Lorrain, Dessamae
1969 Archaeological excavations in the Fish Creek Reservoir, Southern Methodist University Contributions in Anthropology, No. 4.

Lynott, Mark J.

Maxwell, Lisa C.
2012a "DALLAS COUNTY," Handbook of Texas Online (http://www.tshaonline.org/handbook/online/articles/hcd02), accessed October 12, 2012. Published by the Texas State Historical Association
2012b "ADDISON COUNTY," Handbook of Texas Online (http://www.tshaonline.org/handbook/online/articles/hFA01), accessed October 10, 2012. Published by the Texas State Historical Association
2012c "FARMERS BRANCH, TX," Handbook of Texas Online (http://www.tshaonline.org/handbook/online/articles/hef01), accessed December 27, 2012. Published by the Texas State Historical Association.
2012d "RICHARDSON, TX," Handbook of Texas Online (http://www.tshaonline.org/handbook/online/articles/hdr01), accessed June 09, 2013. Published by the Texas State Historical Association.
McDonald, William

Meltzer, D. J.

Meltzer, D. J., and B. D. Smith

Minor, David

Morris, Virginia, and Bill Morris

Nall, Matthew Hayes

2012c "WHITE ROCK, TX (DALLAS COUNTY)," *Handbook of Texas Online* (http://www.tshaonline.org/handbook/online/articles/hnw42), accessed December 27, 2012. Published by the Texas State Historical Association.
National Register Nominations
1988 The Samuel and Julia Gilbert House

North Texas Tollway Authority
2012 Milestones – History and Mission for the North Texas Tollway Authority. Electronic
document available at https://www.ntta.org/whoweare/milestones/Pages/default.aspx,
accessed October 10, 2012.

Newcomb, W. W. Jr.

Payne, Darwin and Kathy Fitzpatrick
1999 *From Prairie to Planes.* Dallas: Three Forks Press.

Perez, Joan Jenkins
2012 "CARROLLTON, TX," *Handbook of Texas Online*
(http://www.tshaonline.org/handbook/online/articles/hdc01), accessed October 12,
2012. Published by the Texas State Historical Association.

Peter, Duane E., and Daniel E. McGregor (editors)
1988 *Late Holocene Prehistory of the Mountain Creek Drainage.* Joe Pool Lake Archeological

Prewitt, E. R.

Prikryl, Daniel
1990 Lower Elm Fork Prehistory: A Redefinition of Cultural Concepts and Chronologies along
the Trinity River, North-Central Texas. Office of the State Archeologist Report 37. Texas
Historical Commission, Austin.

1993 Regional Preservation Plan for Archeological Resources, Prairie-Savanna Archeological
Historical Commission, Austin.

Potts, Charles Shirley
1909 Railroad Transportation in Texas. Bulletin #119, March 1, 1909, University of Texas,
Austin, Texas.
Quimby, Marcel and Singleton, Kate
2008 Downtown Dallas Historic District Expansion Nomination

Recorded Texas Historic Landmark (RTHL)
2007 The Bill and Maude Dodson House.

Reed, S.G.
2012a "Dallas and Wichita Railway," Handbook of Texas Online

1980 Soil Survey of Tarrant County, Texas. United States Department of Agriculture, Soil Conservation Service, in cooperation with Texas Agricultural Experiment Station.

City of Richardson
2012 “Historical Setting of Richardson”. City of Richardson Website.

Sanborn Fire Insurance Maps

Schell, Shirley and Frances B. Well
2012 “PLANO, TX,” Handbook of Texas Online

Slotbloom, Oscar

Speth, J., and S. Scott
Story, Dee Ann

Suhm, D. A.

Tankersley, Kenneth B.

Texas Department of Transportation
1959 Stemmons Freeway Dallas,

The Texas Historical Commission (THC)

The Texas Historical Commission (THC)

THC Subject Marker
1988 Shiloh Baptist Church Subject Marker.

United States Department of Agriculture (USDA)

Webb, W. P., and H. B. Carroll (editors)
1952 *The Handbook of Texas*. The Texas State Historical Association, Austin, Texas.

Welch, June Rayfield
Wells, Frances B.
2012 “FRANKFORD, TX,” *Handbook of Texas Online*

Werner, George C.
2012 “Railroads,” *Handbook of Texas Online*
(http://www.tshaonline.org/handbook/online/articles/eqr01), accessed June 17, 2013. Published by the Texas State Historical Association.

Yates, B. C.

Yates, B. C., and C. R. Ferring

http://www.city-data.com/climate/ft.worth, Texas

Young, Charles H.
2012 “GRAPEVINE, TX (TARRANT COUNTY),” *Handbook of Texas Online*
(http://www/tshaonline.org/handbook/online/articles/heg02), accessed October 10, 2012. Published by the Texas State Historical Association.
Appendix A: Archaeological Resources Map Index
Cotton Belt Corridor
Regional Rail

8/14/2013

Source: Archaeological data from the Texas Historic Commission.
Cotton Belt Corridor
Regional Rail
8/14/2013

Source: Archaeological data from the Texas Historic Commission.

Archaeological Sites and Surveys
Page 1 of 5
Cotton Belt Corridor
Regional Rail

Archaeological Sites and Surveys

Stations
- President George Bush Turnpike Station
- Old City Cemetery
- 12th Street Station
- Shiloh Road Station (West Option)
- Plano Mutual Cemetery

Archaeological Site (Centroid)
- AICOL177
- AICOL47

Archaeological Survey (Linear)
- TxDOT 1982
- FHWA 1985

Archaeological Survey (Area)
- TxDOT 1981
- ICMT 2005

Existing DART Rails
- Red Line
- Orange Line
- Green Line

Cotton Belt Alignment
- Cypress Waters Alignment

Cotton Belt 1000 Meter Study Area

Source: Archaeological data from the Texas Historic Commission.
Appendix B: Architectural Resources Map Index
Cotton Belt Corridor
Regional Rail
8/14/2013

Historic Resources

Historic Resource
Stations

Proposed Cotton Belt Rail
- Cotton Belt Alignment
- Cypress Waters Alignment
- South (Richardson) Alternative

Existing DART Rail
- Red Line
- Orange Line
- Green Line

Source: AEView 2006, ESRI StreetMap North America
North Lake Station

Downtown Carrollton Station

8/14/2013

Cotton Belt Corridor
Regional Rail

Historic Resources

Proposed Cotton Belt Rail
- Cotton Belt Alignment
- Cypress Waters Alignment
- South (Richardson) Alternative

Existing DART Rail
- Red Line
- Orange Line
- Green Line
Historic Resources

- Historic Resource
- Stations
- Existing ROW 175 ft APE
- New ROW 250 ft APE

Proposed Cotton Belt Rail
- Cotton Belt Alignment
- Cypress Waters Alignment
- South (Richardson) Alternative

Existing DART Rail
- Red Line
- Orange Line
- Green Line

Cotton Belt Corridor
Regional Rail
8/14/2013

Source: AEView 2006
ESRI StreetMap North America